Bayesian Case Influence Diagnostics for Survival Models

We propose Bayesian case influence diagnostics for complex survival models. We develop case deletion influence diagnostics for both the joint and marginal posterior distributions based on the Kullback-Leibler divergence (K-L divergence). We present a simplified expression for computing the K-L divergence between the posterior with the full data and the posterior based on single case deletion, as well as investigate its relationships to the conditional predictive ordinate. All the computations for the proposed diagnostic measures can be easily done using Markov chain Monte Carlo samples from the full data posterior distribution. We consider the Cox model with a gamma process prior on the cumulative baseline hazard. We also present a theoretical relationship between our case-deletion diagnostics and diagnostics based on Cox's partial likelihood. A simulated data example and two real data examples are given to demonstrate the methodology.

[1]  Robert E. Weiss,et al.  Bayesian Marginal Influence Assessment , 1998 .

[2]  R. Weiss An approach to Bayesian sensitivity analysis , 1996 .

[3]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[4]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[5]  D. Cox Regression Models and Life-Tables , 1972 .

[6]  L. I. Pettit,et al.  Diagnostics in Bayesian Model Choice , 1986 .

[7]  Ronald Christensen,et al.  Log-Linear Models and Logistic Regression , 1997 .

[8]  Seymour Geisser,et al.  8. Predictive Inference: An Introduction , 1995 .

[9]  Joseph G. Ibrahim,et al.  A Bayesian justification of Cox's partial likelihood , 2003 .

[10]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[11]  V. Sondak,et al.  High- and low-dose interferon alfa-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190. , 2000, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  Rupert G. Miller,et al.  Regression with censored data , 1982 .

[13]  Joseph G. Ibrahim,et al.  Bayesian Survival Analysis , 2004 .

[14]  D. Dey,et al.  Bayesian analysis of outlier problems using divergence measures , 1995 .

[15]  Hong Chang,et al.  Model Determination Using Predictive Distributions with Implementation via Sampling-Based Methods , 1992 .

[16]  Seymour Geisser,et al.  Estimative influence measures for the multivariate general linear model , 1985 .

[17]  J. Kalbfleisch Non‐Parametric Bayesian Analysis of Survival Time Data , 1978 .

[18]  R. Cook Assessment of Local Influence , 1986 .

[19]  B. Carlin An Expected Utility Approach to Influence Diagnostics , 1991 .

[20]  Anthony N. Pettitt,et al.  Case-Weighted Measures of Influence for Proportional Hazards Regression , 1989 .

[21]  R. McCulloch Local Model Influence , 1989 .

[22]  W. Gilks,et al.  Adaptive Rejection Metropolis Sampling Within Gibbs Sampling , 1995 .

[23]  Luis A. Escobar,et al.  Assessing influence in regression analysis with censored data. , 1992, Biometrics.

[24]  Robert E. Weiss,et al.  A Graphical Case Statistic for Assessing Posterior Influence , 1992 .