Investigation of F-BAR domain PACSIN proteins uncovers membrane tubulation function in cilia assembly and transport

[1]  S. Bhattacharyya,et al.  Cellular functions and intrinsic attributes of the ATP‐binding Eps15 homology domain‐containing proteins , 2020, Protein science : a publication of the Protein Society.

[2]  S. Caplan,et al.  MICAL-L1 coordinates ciliogenesis by recruiting EHD1 to the primary cilium , 2019, Journal of Cell Science.

[3]  H. Monyer,et al.  Dynamic Changes in Ultrastructure of the Primary Cilium in Migrating Neuroblasts in the Postnatal Brain , 2019, The Journal of Neuroscience.

[4]  Suzanne I. Specht,et al.  The C7orf43/TRAPPC14 component links the TRAPPII complex to Rabin8 for preciliary vesicle tethering at the mother centriole during ciliogenesis , 2019, The Journal of Biological Chemistry.

[5]  Jason E. Waller,et al.  Division , 2018, Bad Arguments.

[6]  Brian D. Dynlacht,et al.  The regulation of cilium assembly and disassembly in development and disease , 2018, Development.

[7]  Seok-Hyung Kim,et al.  The exocyst is required for photoreceptor ciliogenesis and retinal development , 2017, The Journal of Biological Chemistry.

[8]  J. Reiter,et al.  Genes and molecular pathways underpinning ciliopathies , 2017, Nature Reviews Molecular Cell Biology.

[9]  K. Nagashima,et al.  In Vitro Modeling Using Ciliopathy-Patient-Derived Cells Reveals Distinct Cilia Dysfunctions Caused by CEP290 Mutations. , 2017, Cell reports.

[10]  C. Sung,et al.  Tctex‐1 controls ciliary resorption by regulating branched actin polymerization and endocytosis , 2017, EMBO reports.

[11]  L. Pedersen,et al.  Endocytic Control of Cellular Signaling at the Primary Cilium. , 2016, Trends in biochemical sciences.

[12]  Jordan R. Myers,et al.  Ultra-High Resolution 3D Imaging of Whole Cells , 2016, Cell.

[13]  D. Toomre,et al.  The IN/OUT assay: a new tool to study ciliogenesis , 2016, Cilia.

[14]  Jan Schmoranzer,et al.  Novel organic dyes for multicolor localization‐based super‐resolution microscopy , 2016, Journal of biophotonics.

[15]  S. Subramaniam,et al.  Focused ion beams in biology , 2015, Nature Methods.

[16]  F. Nakatsu A Phosphoinositide Code for Primary Cilia. , 2015, Developmental cell.

[17]  S. Schurmans,et al.  Phosphoinositides Regulate Ciliary Protein Trafficking to Modulate Hedgehog Signaling. , 2015, Developmental cell.

[18]  S. Schiffmann,et al.  Modulation of Ciliary Phosphoinositide Content Regulates Trafficking and Sonic Hedgehog Signaling Output. , 2015, Developmental cell.

[19]  U. Baxa,et al.  Erratum: Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation , 2015, Nature Cell Biology.

[20]  Daniel Gaston,et al.  CRISPR MultiTargeter: A Web Tool to Find Common and Unique CRISPR Single Guide RNA Targets in a Set of Similar Sequences , 2015, PloS one.

[21]  U. Baxa,et al.  Early steps in primary cilium assembly require EHD1- and EHD3-dependent ciliary vesicle formation , 2015, Nature Cell Biology.

[22]  P. Cullen,et al.  Membrane-associated cargo recycling by tubule-based endosomal sorting. , 2014, Seminars in cell & developmental biology.

[23]  S. Mayor,et al.  Clathrin-independent pathways of endocytosis. , 2014, Cold Spring Harbor perspectives in biology.

[24]  George M. Church,et al.  CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing , 2014, Nucleic Acids Res..

[25]  Bradley C. Lowekamp,et al.  Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology. , 2014, Journal of structural biology.

[26]  Y. Yoshihara,et al.  Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis , 2014, Journal of Cell Science.

[27]  P. Paul-Gilloteaux,et al.  Endosomal WASH and exocyst complexes control exocytosis of MT1-MMP at invadopodia , 2013, The Journal of cell biology.

[28]  P. Robinson,et al.  Syndapin – a membrane remodelling and endocytic F‐BAR protein , 2013, The FEBS journal.

[29]  W. Huttner,et al.  Asymmetric Inheritance of Centrosome-Associated Primary Cilium Membrane Directs Ciliogenesis after Cell Division , 2013, Cell.

[30]  Susan R. Wente,et al.  Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system , 2013, Proceedings of the National Academy of Sciences.

[31]  Xiaofeng Zheng,et al.  Tip-to-tip interaction in the crystal packing of PACSIN 2 is important in regulating tubulation activity , 2013, Protein & Cell.

[32]  N. Naslavsky,et al.  Cooperation of MICAL-L1, syndapin2, and phosphatidic acid in tubular recycling endosome biogenesis , 2013, Molecular biology of the cell.

[33]  Cheol‐Hee Kim,et al.  CCDC41 is required for ciliary vesicle docking to the mother centriole , 2013, Proceedings of the National Academy of Sciences.

[34]  A. Takakura,et al.  The cytoplasmic protein Pacsin 2 in kidney development and injury repair. , 2013, Kidney international.

[35]  C. Englert,et al.  Ciliated sensory hair cell formation and function require the F-BAR protein syndapin I and the WH2 domain-based actin nucleator Cobl , 2013, Journal of Cell Science.

[36]  H. Sondermann,et al.  Versatile Membrane Deformation Potential of Activated Pacsin , 2012, PloS one.

[37]  Milan Sonka,et al.  3D Slicer as an image computing platform for the Quantitative Imaging Network. , 2012, Magnetic resonance imaging.

[38]  Yingying Liu,et al.  PACSIN1, a Tau-interacting Protein, Regulates Axonal Elongation and Branching by Facilitating Microtubule Instability* , 2012, The Journal of Biological Chemistry.

[39]  C. Mitchell,et al.  Inositol polyphosphate 5‐phosphatases; new players in the regulation of cilia and ciliopathies , 2012, FEBS letters.

[40]  M. Parker,et al.  Phosphorylation of syndapin I F-BAR domain at two helix-capping motifs regulates membrane tubulation , 2012, Proceedings of the National Academy of Sciences.

[41]  T. Dugladze,et al.  Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin I , 2011, The EMBO journal.

[42]  C. E. Larkins,et al.  Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins , 2011, Molecular biology of the cell.

[43]  C. G. Hansen,et al.  Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis , 2011, Journal of Cell Science.

[44]  S. Suetsugu,et al.  Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting , 2011, Journal of Cell Science.

[45]  D. Breslow,et al.  Primary Cilia: How to Keep the Riff-Raff in the Plasma Membrane , 2011, Current Biology.

[46]  U. Wolfrum,et al.  Intraflagellar transport proteins in ciliogenesis of photoreceptor cells , 2011, Biology of the cell.

[47]  V. Sheffield,et al.  Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome , 2011, Proceedings of the National Academy of Sciences.

[48]  P. Beales,et al.  Ciliopathies: an expanding disease spectrum , 2011, Pediatric Nephrology.

[49]  F. Silbermann,et al.  The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia , 2010, Journal of Cell Science.

[50]  Wei Guo,et al.  Coordination of Rab8 and Rab11 in primary ciliogenesis , 2010, Proceedings of the National Academy of Sciences.

[51]  N. Katsanis,et al.  Bardet-Biedl Syndrome-associated Small GTPase ARL6 (BBS3) Functions at or near the Ciliary Gate and Modulates Wnt Signaling , 2010, The Journal of Biological Chemistry.

[52]  J. B. Rattner,et al.  Primary ciliogenesis defects are associated with human astrocytoma/glioblastoma cells , 2009, BMC Cancer.

[53]  M. Scott,et al.  Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium , 2009, The Journal of cell biology.

[54]  Donald Bliss,et al.  Ion-Abrasion Scanning Electron Microscopy Reveals Surface-Connected Tubular Conduits in HIV-Infected Macrophages , 2009, PLoS pathogens.

[55]  Holger Sondermann,et al.  Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin , 2009, Proceedings of the National Academy of Sciences.

[56]  M. Paulsson,et al.  PACSIN proteins bind tubulin and promote microtubule assembly. , 2008, Experimental cell research.

[57]  P. Sengupta,et al.  elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8 , 2008, Nature Cell Biology.

[58]  Adam Frost,et al.  Structural Basis of Membrane Invagination by F-BAR Domains , 2008, Cell.

[59]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[60]  N. Trede,et al.  Method for isolation of PCR-ready genomic DNA from zebrafish tissues. , 2007, BioTechniques.

[61]  F. Barr,et al.  Functional dissection of Rab GTPases involved in primary cilium formation , 2007, The Journal of cell biology.

[62]  V. Sheffield,et al.  A Core Complex of BBS Proteins Cooperates with the GTPase Rab8 to Promote Ciliary Membrane Biogenesis , 2007, Cell.

[63]  S. Caplan,et al.  EHD1 and Eps15 Interact with Phosphatidylinositols via Their Eps15 Homology Domains* , 2007, Journal of Biological Chemistry.

[64]  Glenn C. Simon,et al.  Identification of Rab11 as a small GTPase binding protein for the Evi5 oncogene , 2007, Proceedings of the National Academy of Sciences.

[65]  M. Kessels,et al.  Syndapin Oligomers Interconnect the Machineries for Endocytic Vesicle Formation and Actin Polymerization* , 2006, Journal of Biological Chemistry.

[66]  D. Rice,et al.  ADP-ribosylation factor-like 3 is involved in kidney and photoreceptor development. , 2006, The American journal of pathology.

[67]  M. Kessels,et al.  EHD proteins associate with syndapin I and II and such interactions play a crucial role in endosomal recycling. , 2005, Molecular biology of the cell.

[68]  W. Hong,et al.  Mutually exclusive interactions of EHD1 with GS32 and Syndapin II , 2004, Molecular membrane biology.

[69]  X. Pesesse,et al.  Inositol Polyphosphate 5‐Phosphatases , 2002 .

[70]  M. Paulsson,et al.  All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. , 2000, Journal of cell science.

[71]  R. Kelly,et al.  Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. , 1999, Molecular biology of the cell.

[72]  J. Luft Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action , 1971, The Anatomical record.

[73]  S. Sorokin Reconstructions of centriole formation and ciliogenesis in mammalian lungs. , 1968, Journal of cell science.

[74]  S. Sorokin,et al.  CENTRIOLES AND THE FORMATION OF RUDIMENTARY CILIA BY FIBROBLASTS AND SMOOTH MUSCLE CELLS , 1962, The Journal of cell biology.

[75]  S. Burgess,et al.  Understanding and Editing the Zebrafish Genome. , 2015, Advances in genetics.

[76]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[77]  M. Scott,et al.  Supporting Online Material Materials and Methods Figs. S1 to S3 Tables S1 to S4 References Patched1 Regulates Hedgehog Signaling at the Primary Cilium , 2022 .

[78]  H. Margalit,et al.  Patched 1 Regulates Hedgehog Signaling at the Primary Cilium , 2022 .