Erratum: ``Prediction of the number of cloud droplets in the ECHAM GCM''

In this paper a prognostic equation for the number of cloud droplets (CDNC) is introduced into the ECHAM general circulation model. The initial CDNC is based on the mechanistic model of Chuang and Penner [1995], providing a more realistical prediction of CDNC than the empirical method previously used. Cloud droplet nucleation is parameterized as a function of total aerosol number concentration, updraft velocity, and a shape parameter, which takes the aerosol composition and size distribution into account. The total number of aerosol particles is obtained as the sum of marine sulfate aerosols produced from dimethyl sulfide, hydrophylic organic and black carbon, submicron dust, and sea-salt aerosols. Anthropogenic sulfate aerosols only add mass to the preexisting aerosols but do not form new particles. The simulated annual mean liquid water path, column CDNC, and effective radius agree well with observations, as does the frequency distributions of column CDNC for clouds over oceans and the variations of cloud optical depth with effective radius.

[1]  J. O'Brien,et al.  Weibull Statistics of Wind Speed over the Ocean , 1986 .

[2]  Mian Chin,et al.  A global three‐dimensional model of tropospheric sulfate , 1996 .

[3]  P. Hobbs,et al.  Light scattering and cloud condensation nucleus activity of sulfate aerosol measured over the northeast Atlantic Ocean , 1993 .

[4]  U. Lohmann,et al.  The atmospheric sulfur cycle in ECHAM-4 and its impact on the shortwave radiation , 1997 .

[5]  Sylvie Joussaume,et al.  Three-dimensional simulations of the atmospheric cycle of desert dust particles using a general circulation model , 1990 .

[6]  J. Lelieveld,et al.  Simulation of global sulfate distribution and the influence on effective cloud drop radii with a coupled photochemistry sulfur cycle model , 1998 .

[7]  Leon D. Rotstayn,et al.  Indirect forcing by anthropogenic aerosols: A global climate model calculation of the effective‐radius and cloud‐lifetime effects , 1999 .

[8]  Toby N. Carlson,et al.  A case study of mobilization and transport of Saharan dust , 1988 .

[9]  Ulrike Lohmann,et al.  Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model , 1996 .

[10]  W. Rossow,et al.  ISCCP Cloud Data Products , 1991 .

[11]  Joyce E. Penner,et al.  An assessment of the radiative effects of anthropogenic sulfate , 1997 .

[12]  Ranjit M. Passi,et al.  Modeling dust emission caused by wind erosion , 1988 .

[13]  P. Hobbs,et al.  Measurements of Some Aerosol Properties Relevant to Radiative Forcing on the East Coast of the United States , 1995 .

[14]  Robert S. Webb,et al.  Specifying land surface characteristics in general circulation models: Soil profile data set and derived water‐holding capacities , 1993 .

[15]  M. Claussen,et al.  The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate , 1996 .

[16]  Olivier Boucher,et al.  The sulfate‐CCN‐cloud albedo effect , 1995 .

[17]  L. Ruby Leung,et al.  Prediction of cloud droplet number in a general , 1997 .

[18]  D. E. Spiel,et al.  A Model of Marine Aerosol Generation Via Whitecaps and Wave Disruption , 1986 .

[19]  P. Rasch,et al.  Computational aspects of moisture transport in global models of the atmosphere , 1990 .

[20]  Shao-Meng Li,et al.  Water-soluble fractions of aerosol and their relations to number size distributions based on aircraft measurements from the North Atlantic Regional Experiment , 1996 .

[21]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[22]  J. Prospero Mineral and sea salt aerosol concentrations in various ocean regions , 1979 .

[23]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[24]  Yoshimitsu Ogura,et al.  NUMERICAL SIMULATION OF THE LIFE CYCLE OF A THUNDERSTORM CELL , 1971 .

[25]  Larry L. Stowe,et al.  Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product , 1997 .

[26]  H. Kapitza,et al.  3D mesoscale numerical studies of cirrus and stratus clouds by their time and space evolution , 1992 .

[27]  G. Brasseur,et al.  A three-dimensional study of the tropospheric sulfur cycle , 1995 .

[28]  I. Fung,et al.  Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness , 1994 .

[29]  K. Wyser The effective radius in large-scale models: impact of aerosols and coalescence , 1998 .

[30]  Ruprecht Jaenicke,et al.  Chapter 1 Tropospheric Aerosols , 1993 .

[31]  T. Phillips,et al.  A summary documentation of the AMIP models , 1994 .

[32]  E. Roeckner,et al.  Sensitivity of a general circulation model to parameterizations of cloud–turbulence interactions in the atmospheric boundary layer , 1995 .

[33]  Joyce E. Penner,et al.  Towards the development of a global inventory for black carbon emissions , 1993 .

[34]  W. Slinn,et al.  Predictions for particle deposition on natural waters , 1980 .

[35]  R. Welch,et al.  Global variation of column droplet concentration in low‐level clouds , 1998 .

[36]  J. Penner,et al.  A global three‐dimensional model study of carbonaceous aerosols , 1996 .

[37]  Mian Chin,et al.  Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results , 1997 .

[38]  K. Pye Aeolian dust and dust deposits , 1987 .

[39]  P. Crutzen,et al.  A three-dimensional model of the global ammonia cycle , 1994 .

[40]  K. Noone,et al.  Aerosol particles and clouds: which particles form cloud droplets? , 1998 .

[41]  U. Lohmann,et al.  Comparing Different Cloud Schemes of a Single Column Model by Using Mesoscale Forcing and Nudging Technique , 1999 .

[42]  J. Lelieveld,et al.  A dry deposition parameterization for sulfur oxides in a chemistry and general circulation model , 1998 .

[43]  J. Penner,et al.  Effects of anthropogenic sulfate on cloud drop nucleation and optical properties , 1995 .

[44]  J. Wilson,et al.  A global black carbon aerosol model , 1996 .

[45]  W. Prescott Will a continuous GPS array for L.A. help earthquake hazard assessment , 1996 .

[46]  P. Crutzen,et al.  Estimates of Annual and Regional Releases of CO2 and Other Trace Gases to the Atmosphere from Fires in the Tropics, Based on the FAO Statistics for the Period 1975–1980 , 1990 .

[47]  William G. Nickling,et al.  Emission of Fine-Grained Particulates from Desert Soils , 1989 .

[48]  A. Goudie,et al.  The nature, distribution and formation of pans in arid zones , 1995 .

[49]  P. Warneck Chemistry of the natural atmosphere , 1999 .

[50]  D. Rea The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind , 1994 .

[51]  I. Gultepe,et al.  The Relationship Between Cloud Droplet and Aerosol Number Concentrations for Climate Models , 1996 .

[52]  A. Lacis,et al.  Near-Global Survey of Effective Droplet Radii in Liquid Water Clouds Using ISCCP Data. , 1994 .

[53]  D. L. Roberts,et al.  A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols , 1994, Nature.

[54]  J. Feichter,et al.  Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate distribution , 1997 .

[55]  R. Welch,et al.  Global Survey of the Relationships of Cloud Albedo and Liquid Water Path with Droplet Size Using ISCCP , 1998 .

[56]  B. Rockel,et al.  A parameterization of broad band radiative transfer properties of water, ice, and mixed clouds , 1991 .

[57]  K. D. Beheng A parameterization of warm cloud microphysical conversion processes , 1994 .

[58]  J. Morcrette Radiation and cloud radiative properties in the European Centre for Medium Range Weather Forecasts forecasting system , 1991 .

[59]  D. Randerson,et al.  Atmospheric science and power production , 1984 .

[60]  W. Malm,et al.  Spatial and seasonal trends in particle concentration and optical extinction in the United States , 1994 .

[61]  D. Gillette Threshold friction velocities for dust production for agricultural soils , 1988 .

[62]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[63]  C. F. Rogers,et al.  Relationship between Critical Supersaturation and Cloud Droplet Size: Implications for Cloud Mixing Processes , 1986 .

[64]  Daniel J. Jacob,et al.  Global inventory of sulfur emissions with 1°×1° resolution , 1992 .

[65]  Johann Feichter,et al.  Simulation of the tropospheric sulfur cycle in a global climate model , 1996 .

[66]  Jos Lelieveld,et al.  Distribution and budget of O3 in the troposphere calculated with a chemistry general circulation model. , 1995 .

[67]  E. Kessler On the distribution and continuity of water substance in atmospheric circulations , 1969 .

[68]  I. Tang Chemical and size effects of hygroscopic aerosols on light scattering coefficients , 1996 .

[69]  R. Pinker,et al.  SHORTWAVE RADIATIVE CLOUD FORCING IN THE TROPICAL PACIFIC INCLUDING THE 1982–1983 AND 1987 EL NIÑOs , 1996 .

[70]  W. F. Welch,et al.  Studies of the Structure and Reactivity of Soot , 1989 .

[71]  Darren L. Jackson,et al.  A physical retrieval of cloud liquid water over the global oceans using special sensor microwave/imager (SSM/I) observations , 1993 .

[72]  D. Lilly,et al.  Cloud factor and seasonality of the indirect effect of anthropogenic sulfate aerosols , 1997 .

[73]  J. Hudson,et al.  Comparisons of cloud microphysics with cloud condensation nuclei spectra over the summertime Southern Ocean , 1998 .

[74]  Stephen E. Schwartz,et al.  Sulfate over the North Atlantic and adjacent continental regions: Evaluation for October and November 1986 using a three-dimensonal model driven by observation-derived meteorology , 1994 .

[75]  U. Lohmann,et al.  Impact of sulfate aerosols on albedo and lifetime of clouds: A sensitivity study with the ECHAM4 GCM , 1997 .

[76]  S. Ghan,et al.  A parameterization of cloud droplet nucleation part I: single aerosol type , 1993 .

[77]  F. Weng,et al.  Retrieval of cloud liquid water using the special sensor microwave imager (SSM/I) , 1994 .