Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems
暂无分享,去创建一个
[1] L. Nottale. Fractality field in the theory of scale relativity , 2008 .
[2] J. Struckmeier,et al. Canonical transformations and exact invariants for time‐dependent Hamiltonian systems , 2001, Annalen der Physik.
[3] M. Naschie. Hilbert, Fock and Cantorian spaces in the quantum two-slit gedanken experiment , 2006 .
[4] I. Podlubny. Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .
[5] Delfim F. M. Torres,et al. Fractional actionlike variational problems , 2008, 0804.4500.
[6] R A El Nabulsi,et al. A FRACTIONAL ACTION-LIKE VARIATIONAL APPROACH OF SOME CLASSICAL, QUANTUM AND GEOMETRICAL DYNAMICS , 2005 .
[7] M. E. Naschie. On the Nature of Complex Time, Diffusion and the Two-slit Experiment , 1995 .
[8] M. S. El Naschie,et al. On the unification of the fundamental forces and complex time in the E(∞) space , 2000 .
[9] M. E. Naschie,et al. On the uncertainty of Cantorian geometry and the two-slit experiment , 1998 .
[10] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[11] M. Naschie. Hilbert space, the number of Higgs particles and the quantum two-slit experiment , 2006 .
[12] Laurent Nottale,et al. On the transition from the classical to the quantum regime in fractal space-time theory , 2005 .
[13] M. S. El Naschie,et al. On an Eleven Dimensional E-inflnity Fractal Spacetime Theory , 2006 .
[14] Quantum–classical transition in scale relativity , 2004, quant-ph/0609161.
[15] Ervin Goldfain. Fractional dynamics, Cantorian space–time and the gauge hierarchy problem , 2004 .
[16] Ervin Goldfain,et al. Complexity in quantum field theory and physics beyond the standard model , 2005 .
[17] A. R. El-Nabulsi. FRACTIONAL LAGRANGIAN FORMULATION OF GENERAL RELATIVITY AND EMERGENCE OF COMPLEX, SPINORIAL AND NONCOMMUTATIVE GRAVITY , 2009 .
[18] M. Naschie. Fractal gravity and symmetry breaking in a hierachical Cantorian space , 1997 .
[19] M. Naschie. On 't Hooft dimensional regularization in space , 2001 .
[20] Delfim F. M. Torres,et al. Constants of motion for fractional action-like variational problems , 2006, math/0607472.
[21] M. E. Naschie,et al. The 'Discreet' Charm of Certain Eleven Dimensional Spacetime Theories , 2006 .
[22] M. Naschie. On the cohomology and instantons number in E-infinity Cantorian spacetime , 2005 .
[23] El-nabulsi Ahmad Rami. Fractional dynamics, fractional weak bosons masses and physics beyond the standard model , 2009 .
[24] K. Miller,et al. An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .
[25] Ervin Goldfain,et al. Fractional dynamics and the Standard Model for particle physics , 2008 .
[26] Carlos Castro,et al. On M Theory, Quantum Paradoxes and the New Relativity , 2000 .
[27] Delfim F. M. Torres,et al. Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β) , 2007 .
[28] G. López,et al. Ambiguities on the Quantization of a One-Dimensional Dissipative System with Position Depending Dissipative Coefficient , 2005, quant-ph/0504167.
[29] Laurent Nottale,et al. La relativité dans tous ses états : au-delà de l'espace-temps , 1998 .
[30] One-Dimensional Relativistic Dissipative System with Constant Force and its Quantization , 2005, quant-ph/0503097.
[31] Jacques Laskar,et al. Mercury's capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics , 2004, Nature.
[32] M. Naschie. A guide to the mathematics of E-infinity Cantorian spacetime theory , 2005 .
[33] Rami Ahmad El-Nabulsi,et al. FRACTIONAL FIELD THEORIES FROM MULTI-DIMENSIONAL FRACTIONAL VARIATIONAL PROBLEMS , 2008 .
[34] M. E. Naschie,et al. A review of E infinity theory and the mass spectrum of high energy particle physics , 2004 .
[35] The Pauli equation in scale relativity , 2006, quant-ph/0609107.
[36] Continuous differential operators and a new interpretation of the charmonium spectrum , 2005, nucl-th/0508033.
[37] R. Herrmann. Gauge Invariance in Fractional Field Theories , 2007, Fractional Calculus.
[38] M. Naschie. Quantum mechanics and the possibility of a Cantorian space-time , 1991 .
[39] A. Celletti. Analysis of resonances in the spin-orbit problem in Celestial Mechanics: The synchronous resonance (Part I) , 1990 .
[40] A. R. El-Nabulsi. THE FRACTIONAL CALCULUS OF VARIATIONS FROM EXTENDED ERDÉLYI-KOBER OPERATOR , 2009 .