Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems

Abstract We communicate through this work the fractional calculus of variations and its corresponding Euler–Lagrange equations in 1D constrained holonomic, non-holonomic, and semi-holonomic dissipative dynamical system. The extension of the laws obtained to the 2D space state is done. Some interesting consequences are revealed.

[1]  L. Nottale Fractality field in the theory of scale relativity , 2008 .

[2]  J. Struckmeier,et al.  Canonical transformations and exact invariants for time‐dependent Hamiltonian systems , 2001, Annalen der Physik.

[3]  M. Naschie Hilbert, Fock and Cantorian spaces in the quantum two-slit gedanken experiment , 2006 .

[4]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[5]  Delfim F. M. Torres,et al.  Fractional actionlike variational problems , 2008, 0804.4500.

[6]  R A El Nabulsi,et al.  A FRACTIONAL ACTION-LIKE VARIATIONAL APPROACH OF SOME CLASSICAL, QUANTUM AND GEOMETRICAL DYNAMICS , 2005 .

[7]  M. E. Naschie On the Nature of Complex Time, Diffusion and the Two-slit Experiment , 1995 .

[8]  M. S. El Naschie,et al.  On the unification of the fundamental forces and complex time in the E(∞) space , 2000 .

[9]  M. E. Naschie,et al.  On the uncertainty of Cantorian geometry and the two-slit experiment , 1998 .

[10]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[11]  M. Naschie Hilbert space, the number of Higgs particles and the quantum two-slit experiment , 2006 .

[12]  Laurent Nottale,et al.  On the transition from the classical to the quantum regime in fractal space-time theory , 2005 .

[13]  M. S. El Naschie,et al.  On an Eleven Dimensional E-inflnity Fractal Spacetime Theory , 2006 .

[14]  Quantum–classical transition in scale relativity , 2004, quant-ph/0609161.

[15]  Ervin Goldfain Fractional dynamics, Cantorian space–time and the gauge hierarchy problem , 2004 .

[16]  Ervin Goldfain,et al.  Complexity in quantum field theory and physics beyond the standard model , 2005 .

[17]  A. R. El-Nabulsi FRACTIONAL LAGRANGIAN FORMULATION OF GENERAL RELATIVITY AND EMERGENCE OF COMPLEX, SPINORIAL AND NONCOMMUTATIVE GRAVITY , 2009 .

[18]  M. Naschie Fractal gravity and symmetry breaking in a hierachical Cantorian space , 1997 .

[19]  M. Naschie On 't Hooft dimensional regularization in space , 2001 .

[20]  Delfim F. M. Torres,et al.  Constants of motion for fractional action-like variational problems , 2006, math/0607472.

[21]  M. E. Naschie,et al.  The 'Discreet' Charm of Certain Eleven Dimensional Spacetime Theories , 2006 .

[22]  M. Naschie On the cohomology and instantons number in E-infinity Cantorian spacetime , 2005 .

[23]  El-nabulsi Ahmad Rami Fractional dynamics, fractional weak bosons masses and physics beyond the standard model , 2009 .

[24]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[25]  Ervin Goldfain,et al.  Fractional dynamics and the Standard Model for particle physics , 2008 .

[26]  Carlos Castro,et al.  On M Theory, Quantum Paradoxes and the New Relativity , 2000 .

[27]  Delfim F. M. Torres,et al.  Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β) , 2007 .

[28]  G. López,et al.  Ambiguities on the Quantization of a One-Dimensional Dissipative System with Position Depending Dissipative Coefficient , 2005, quant-ph/0504167.

[29]  Laurent Nottale,et al.  La relativité dans tous ses états : au-delà de l'espace-temps , 1998 .

[30]  One-Dimensional Relativistic Dissipative System with Constant Force and its Quantization , 2005, quant-ph/0503097.

[31]  Jacques Laskar,et al.  Mercury's capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics , 2004, Nature.

[32]  M. Naschie A guide to the mathematics of E-infinity Cantorian spacetime theory , 2005 .

[33]  Rami Ahmad El-Nabulsi,et al.  FRACTIONAL FIELD THEORIES FROM MULTI-DIMENSIONAL FRACTIONAL VARIATIONAL PROBLEMS , 2008 .

[34]  M. E. Naschie,et al.  A review of E infinity theory and the mass spectrum of high energy particle physics , 2004 .

[35]  The Pauli equation in scale relativity , 2006, quant-ph/0609107.

[36]  Continuous differential operators and a new interpretation of the charmonium spectrum , 2005, nucl-th/0508033.

[37]  R. Herrmann Gauge Invariance in Fractional Field Theories , 2007, Fractional Calculus.

[38]  M. Naschie Quantum mechanics and the possibility of a Cantorian space-time , 1991 .

[39]  A. Celletti Analysis of resonances in the spin-orbit problem in Celestial Mechanics: The synchronous resonance (Part I) , 1990 .

[40]  A. R. El-Nabulsi THE FRACTIONAL CALCULUS OF VARIATIONS FROM EXTENDED ERDÉLYI-KOBER OPERATOR , 2009 .