Correlated Component Regression: A Fast Parsimonious Approach for Predicting Outcome Variables from a Large Number of Predictors

[1]  Cees G. M. Snoek,et al.  Variable Selection , 2019, Model-Based Clustering and Classification for Data Science.

[2]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[3]  S. Keleş,et al.  Sparse partial least squares regression for simultaneous dimension reduction and variable selection , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[4]  R. Lyles,et al.  A Fresh Look at the Discriminant Function Approach for Estimating Crude or Adjusted Odds Ratios , 2009, The American statistician.

[5]  Jianqing Fan,et al.  Sure independence screening for ultrahigh dimensional feature space , 2006, math/0612857.

[6]  R. Tibshirani,et al.  Prediction by Supervised Principal Components , 2006 .

[7]  Lynn Friedman,et al.  Graphical Views of Suppression and Multicollinearity in Multiple Linear Regression , 2005 .

[8]  Gersende Fort,et al.  Classification using partial least squares with penalized logistic regression , 2005, Bioinform..

[9]  P. Bickel,et al.  Some theory for Fisher''s linear discriminant function , 2004 .

[10]  H. Lynn Suppression and Confounding in Action , 2003 .

[11]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[12]  Jay Magidson,et al.  Maximum Likelihood Assessment of Clinical Trials Based on an Ordered Categorical Response , 1996 .

[13]  Jay Magidson,et al.  The Role of Proxy Genes in Predictive Models: An Application to Early Detection of Prostate Cancer , 2010 .