Fitting Bivariate Cumulative Returns with Copulas
暂无分享,去创建一个
[1] Wolfgang Härdle,et al. Measuring Risk in Complex Stochastic Systems , 2000 .
[2] Thierry Roncalli,et al. Copulas for finance , 2000 .
[3] Masaaki Sibuya,et al. Bivariate extreme statistics, I , 1960 .
[4] J. Hüsler. Maxima of normal random vectors: between independence and complete dependence , 1989 .
[5] E. Lehmann. Some Concepts of Dependence , 1966 .
[6] David X. Li. On Default Correlation: A Copula Function Approach , 1999 .
[7] A. Sampson,et al. Uniform representations of bivariate distributions , 1975 .
[8] Ernst Eberlein,et al. A Tailored Suit for Risk Management: Hyperbolic Model , 2000 .
[9] Stuart A. Klugman,et al. Loss Models: From Data to Decisions , 1998 .
[10] Martin Crowder,et al. Continuous Bivariate Distributions, Emphasizing Applications , 1993 .
[11] K. Prause. The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures , 1999 .
[12] Josef Štěpán,et al. Distributions with given marginals and moment problems , 1997 .
[13] Werner Hürlimann,et al. Hutchinson-Lai's Conjecture for Bivariate Extreme Value Copulas , 2002 .
[14] P. Hougaard. A class of multivanate failure time distributions , 1986 .
[15] Ole E. Barndorff-Nielsen,et al. Hyperbolic Distributions and Ramifications: Contributions to Theory and Application , 1981 .
[16] Samuel Kotz,et al. Advances in Probability Distributions with Given Marginals , 1991 .
[17] Emiliano A. Valdez,et al. Annuity Valuation with Dependent Mortality , 1996 .
[18] James Xu,et al. Statistical modelling and inference for multivariate and longitudinal discrete response data , 1996 .
[19] O. Barndorff-Nielsen. Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[20] E. Eberlein. Application of Generalized Hyperbolic Lévy Motions to Finance , 2001 .
[21] M. J. Frank. On the simultaneous associativity ofF(x, y) andx+y−F(x, y) , 1978 .
[22] Ludger Rüschendorf,et al. Distributions with fixed marginals and related topics , 1999 .
[23] Emiliano A. Valdez,et al. Understanding Relationships Using Copulas , 1998 .
[24] A. W. Kemp,et al. Continuous Bivariate Distributions, Emphasising Applications , 1991 .
[25] Jacob Cohen. A Coefficient of Agreement for Nominal Scales , 1960 .
[26] O. Barndorff-Nielsen,et al. Lévy processes : theory and applications , 2001 .
[27] Stanley J. Kon. Models of Stock Returns—A Comparison , 1984 .
[28] M. E. Johnson,et al. A Family of Distributions for Modelling Non‐Elliptically Symmetric Multivariate Data , 1981 .
[29] M. J. Frank. On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .
[30] O. Barndorff-Nielsen,et al. Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions , 1977 .
[31] Robert C. Blattberg,et al. A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices: Reply , 1974 .
[32] George Kimeldorf,et al. One-parameter families of bivariate distributions with fixed marginals , 1975 .
[33] P. Embrechts,et al. Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .
[34] P. Praetz,et al. The Distribution of Share Price Changes , 1972 .
[35] C. Small,et al. The theory and applications of statistical inference functions , 1988 .
[36] P. Embrechts,et al. Correlation and Dependency in Risk Management , 2002 .
[37] E. Eberlein,et al. Hyperbolic distributions in finance , 1995 .
[38] Ole E. Barndorff-Nielsen,et al. Processes of normal inverse Gaussian type , 1997, Finance Stochastics.
[39] H. Joe. Multivariate models and dependence concepts , 1998 .
[40] Satishs Iyengar,et al. Multivariate Models and Dependence Concepts , 1998 .
[41] Carles M. Cuadras,et al. A continuous general multivariate distribution and its properties , 1981 .
[42] S. Resnick. Extreme Values, Regular Variation, and Point Processes , 1987 .
[43] Paul Embrechts,et al. S.A. Klugman, H.H. Panjer and G.E. Willmot (1998): Loss Models: From Data to Decisions. Wiley, New York , 1998, ASTIN Bulletin.
[44] E. Eberlein,et al. New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .
[45] Stuart A. Klugman,et al. Fitting bivariate loss distributions with copulas , 1999 .
[46] D. Clayton. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .
[47] Ganapati P. Patil,et al. Statistical Distributions in Scientific Work , 1981 .
[48] Ph. Pluvinage. Remarque au sujet de la note précédente , 1958 .
[49] Roger B. Nelsen,et al. Copulas and Association , 1991 .
[50] J. Carriére. DEPENDENT DECREMENT THEORY , 1994 .
[51] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[52] Werner Hürlimann,et al. Financial Data Analysis with Two Symmetric Distributions , 2001 .
[53] E. Eberlein,et al. The Generalized Hyperbolic Model: Financial Derivatives and Risk Measures , 2002 .
[54] Thorsten Rheinländer. Risk Management: Value at Risk and Beyond , 2003 .
[55] Bill Ravens,et al. An Introduction to Copulas , 2000, Technometrics.
[56] Ralph B. D'Agostino,et al. Goodness-of-Fit-Techniques , 2020 .
[57] Janos Galambos,et al. Order Statistics of Samples from Multivariate Distributions , 1975 .
[58] Eric Bouyé,et al. Copulas for Finance - A Reading Guide and Some Applications , 2000 .
[59] N. Shephard,et al. Modelling by L´ evy Processes for Financial Econometrics , 2000 .