Fitting Bivariate Cumulative Returns with Copulas

Abstract A copula based statistical method for fitting joint cumulative returns between a market index and a single stock to daily data is proposed. Modifying the method of inference functions for margins (IFM method), one performs two separate maximum likelihood estimations of the univariate marginal distributions, assumed to be normal inverse gamma mixtures with kurtosis parameter equal to 6, followed by a minimization of the bivariate chi-square statistic associated to an adequate bivariate version of the usual Pearson goodness-of-fit test. The copula fitting results for daily cumulative returns between the Swiss Market Index and a stock in the index family for an approximate 1-year period are quite satisfactory. The best overall fits are obtained for the new linear Spearman copula, as well as for the Frank and Gumbel–Hougaard copulas. Finally, a significant application to covariance estimation for the linear Spearman copula is discussed.

[1]  Wolfgang Härdle,et al.  Measuring Risk in Complex Stochastic Systems , 2000 .

[2]  Thierry Roncalli,et al.  Copulas for finance , 2000 .

[3]  Masaaki Sibuya,et al.  Bivariate extreme statistics, I , 1960 .

[4]  J. Hüsler Maxima of normal random vectors: between independence and complete dependence , 1989 .

[5]  E. Lehmann Some Concepts of Dependence , 1966 .

[6]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[7]  A. Sampson,et al.  Uniform representations of bivariate distributions , 1975 .

[8]  Ernst Eberlein,et al.  A Tailored Suit for Risk Management: Hyperbolic Model , 2000 .

[9]  Stuart A. Klugman,et al.  Loss Models: From Data to Decisions , 1998 .

[10]  Martin Crowder,et al.  Continuous Bivariate Distributions, Emphasizing Applications , 1993 .

[11]  K. Prause The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures , 1999 .

[12]  Josef Štěpán,et al.  Distributions with given marginals and moment problems , 1997 .

[13]  Werner Hürlimann,et al.  Hutchinson-Lai's Conjecture for Bivariate Extreme Value Copulas , 2002 .

[14]  P. Hougaard A class of multivanate failure time distributions , 1986 .

[15]  Ole E. Barndorff-Nielsen,et al.  Hyperbolic Distributions and Ramifications: Contributions to Theory and Application , 1981 .

[16]  Samuel Kotz,et al.  Advances in Probability Distributions with Given Marginals , 1991 .

[17]  Emiliano A. Valdez,et al.  Annuity Valuation with Dependent Mortality , 1996 .

[18]  James Xu,et al.  Statistical modelling and inference for multivariate and longitudinal discrete response data , 1996 .

[19]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  E. Eberlein Application of Generalized Hyperbolic Lévy Motions to Finance , 2001 .

[21]  M. J. Frank On the simultaneous associativity ofF(x, y) andx+y−F(x, y) , 1978 .

[22]  Ludger Rüschendorf,et al.  Distributions with fixed marginals and related topics , 1999 .

[23]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[24]  A. W. Kemp,et al.  Continuous Bivariate Distributions, Emphasising Applications , 1991 .

[25]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[26]  O. Barndorff-Nielsen,et al.  Lévy processes : theory and applications , 2001 .

[27]  Stanley J. Kon Models of Stock Returns—A Comparison , 1984 .

[28]  M. E. Johnson,et al.  A Family of Distributions for Modelling Non‐Elliptically Symmetric Multivariate Data , 1981 .

[29]  M. J. Frank On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .

[30]  O. Barndorff-Nielsen,et al.  Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions , 1977 .

[31]  Robert C. Blattberg,et al.  A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices: Reply , 1974 .

[32]  George Kimeldorf,et al.  One-parameter families of bivariate distributions with fixed marginals , 1975 .

[33]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[34]  P. Praetz,et al.  The Distribution of Share Price Changes , 1972 .

[35]  C. Small,et al.  The theory and applications of statistical inference functions , 1988 .

[36]  P. Embrechts,et al.  Correlation and Dependency in Risk Management , 2002 .

[37]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[38]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[39]  H. Joe Multivariate models and dependence concepts , 1998 .

[40]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[41]  Carles M. Cuadras,et al.  A continuous general multivariate distribution and its properties , 1981 .

[42]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[43]  Paul Embrechts,et al.  S.A. Klugman, H.H. Panjer and G.E. Willmot (1998): Loss Models: From Data to Decisions. Wiley, New York , 1998, ASTIN Bulletin.

[44]  E. Eberlein,et al.  New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .

[45]  Stuart A. Klugman,et al.  Fitting bivariate loss distributions with copulas , 1999 .

[46]  D. Clayton A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .

[47]  Ganapati P. Patil,et al.  Statistical Distributions in Scientific Work , 1981 .

[48]  Ph. Pluvinage Remarque au sujet de la note précédente , 1958 .

[49]  Roger B. Nelsen,et al.  Copulas and Association , 1991 .

[50]  J. Carriére DEPENDENT DECREMENT THEORY , 1994 .

[51]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[52]  Werner Hürlimann,et al.  Financial Data Analysis with Two Symmetric Distributions , 2001 .

[53]  E. Eberlein,et al.  The Generalized Hyperbolic Model: Financial Derivatives and Risk Measures , 2002 .

[54]  Thorsten Rheinländer Risk Management: Value at Risk and Beyond , 2003 .

[55]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[56]  Ralph B. D'Agostino,et al.  Goodness-of-Fit-Techniques , 2020 .

[57]  Janos Galambos,et al.  Order Statistics of Samples from Multivariate Distributions , 1975 .

[58]  Eric Bouyé,et al.  Copulas for Finance - A Reading Guide and Some Applications , 2000 .

[59]  N. Shephard,et al.  Modelling by L´ evy Processes for Financial Econometrics , 2000 .