A robust hybrid method for nonrigid image registration

A nonrigid registration method is proposed to automatically align two images by registering two sets of sparse features extracted from the images. Motivated by the paradigm of Robust Point Matching (RPM) algorithms 1,2], which were originally proposed for shape registration, we develop Robust Hybrid Image Matching (RHIM) algorithm by alternatively optimizing feature correspondence and spatial transformation for image registration. Our RHIM algorithm is built to be robust to feature extraction errors. A novel dynamic outlier rejection approach is described for removing outliers and a local refinement technique is applied to correct non-exactly matched correspondences arising from image noise and deformations. Experimental results demonstrate the robustness and accuracy of our method.

[1]  Alan L. Yuille,et al.  A mathematical analysis of the motion coherence theory , 1989, International Journal of Computer Vision.

[2]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Dinggang Shen,et al.  HAMMER: hierarchical attribute matching mechanism for elastic registration , 2002, IEEE Transactions on Medical Imaging.

[4]  Andrew Zisserman,et al.  An Affine Invariant Salient Region Detector , 2004, ECCV.

[5]  Dinggang Shen,et al.  Image registration by local histogram matching , 2007, Pattern Recognit..

[6]  Karl Rohr,et al.  Spline-based elastic image registration: integration of landmark errors and orientation attributes , 2003, Comput. Vis. Image Underst..

[7]  David Doermann,et al.  Robust Point Matching for Non-Rigid Shapes: A Relaxation Labeling Based Approach , 2004 .

[8]  Takeo Kanade,et al.  Object detection using 2D spatial ordering constraints , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[9]  Dinggang Shen,et al.  Non-rigid registration between histological and MR images of the prostate: A joint segmentation and registration framework , 2009, CVPR 2009.

[10]  Nikos Paragios,et al.  DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency Weighting , 2009, IPMI.

[11]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[12]  Anand Rangarajan,et al.  The Softassign Procrustes Matching Algorithm , 1997, IPMI.

[13]  Nicholas Ayache,et al.  Iconic feature based nonrigid registration: the PASHA algorithm , 2003, Comput. Vis. Image Underst..

[14]  Karl Rohr,et al.  Elastic registration of electrophoresis images using intensity information and point landmarks , 2004, Pattern Recognit..

[15]  Edwin R. Hancock,et al.  Graph Matching With a Dual-Step EM Algorithm , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Linda G. Shapiro,et al.  A SIFT descriptor with global context , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  Dinggang Shen Fast image registration by hierarchical soft correspondence detection , 2009, Pattern Recognit..

[18]  Colin Studholme,et al.  Nonrigid image registration: guest editors' introduction , 2003, Comput. Vis. Image Underst..

[19]  J. J. Kosowsky,et al.  Statistical Physics Algorithms That Converge , 1994, Neural Computation.

[20]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Volker Blanz,et al.  Component-Based Face Recognition with 3D Morphable Models , 2004, CVPR Workshops.

[22]  Dinggang Shen,et al.  Multimodality image registration by maximization of quantitative-qualitative measure of mutual information , 2008, Pattern Recognit..

[23]  James S. Duncan,et al.  Analysis of Left Ventricular Motion Using a General Robust Point Matching Algorithm , 2003, MICCAI.

[24]  Dimitris N. Metaxas,et al.  Hybrid Image Registration based on Configural Matching of Scale-Invariant Salient Region Features , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[25]  Karl Rohr,et al.  Physics-based elastic registration using non-radial basis functions and including landmark localization uncertainties , 2008, Comput. Vis. Image Underst..

[26]  Robert T. Schultz,et al.  Registration of Cortical Anatomical Structures via Robust 3D Point Matching , 1999, IPMI.

[27]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[28]  Dinggang Shen,et al.  Learning Best Features for Deformable Registration of MR Brains , 2005, MICCAI.

[29]  Dinggang Shen,et al.  TPS-HAMMER: Improving HAMMER registration algorithm by soft correspondence matching and thin-plate splines based deformation interpolation , 2010, NeuroImage.

[30]  William M. Wells,et al.  Statistical Approaches to Feature-Based Object Recognition , 2004, International Journal of Computer Vision.

[31]  Christos Davatzikos,et al.  DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency Weighting , 2009, IPMI.

[32]  Jean-Francois Mangin,et al.  Multisubject Non-rigid Registration of Brain MRI Using Intensity and Geometric Features , 2001, MICCAI.

[33]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.

[34]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[35]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[36]  Keith E. Price,et al.  Relaxation Matching Techniques-A Comparison , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Steven W. Zucker,et al.  On the Foundations of Relaxation Labeling Processes , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Volker Blanz,et al.  Component-Based Face Recognition with 3D Morphable Models , 2003, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[39]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[40]  G. Wahba Spline models for observational data , 1990 .

[41]  Yuedong Wang Smoothing Spline Models with Correlated Random Errors , 1998 .

[42]  Jürgen Weese,et al.  Landmark-based elastic registration using approximating thin-plate splines , 2001, IEEE Transactions on Medical Imaging.

[43]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[44]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[45]  Jong Beom Ra,et al.  Multi-sensor image registration based on intensity and edge orientation information , 2008, Pattern Recognit..

[46]  D. Hill,et al.  Non-rigid image registration: theory and practice. , 2004, The British journal of radiology.

[47]  Pierre Hellier,et al.  Coupling dense and landmark-based approaches for nonrigid registration , 2003, IEEE Transactions on Medical Imaging.

[48]  Simon R. Arridge,et al.  A survey of hierarchical non-linear medical image registration , 1999, Pattern Recognit..

[49]  Dinggang Shen,et al.  Learning-based deformation estimation for fast non-rigid registration , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[50]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[51]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.