Mesh Smoothing Schemes Based on Optimal Delaunay Triangulations

We present several mesh smoothing schemes based on the concept of optimal Delaunay triangulations. We define the optimal Delaunay triangulation (ODT) as the triangulation that minimizes the interpolation error among all triangulations with the same number of vertices. ODTs aim to equidistribute the edge length under a new metric related to the Hessian matrix of the approximated function. Therefore we define the interpolation error as the mesh quality and move each node to a new location, in its local patch, that reduces the interpolation error. With several formulas for the interpolation error, we derive a suitable set of mesh smoothers among which Laplacian smoothing is a special case. The computational cost of proposed new mesh smoothing schemes in the isotropic case is as low as Laplacian smoothing while the error-based mesh quality is provably improved. Our mesh smoothing schemes also work well in the anisotropic case.

[1]  V. T. Rajan,et al.  Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.

[2]  Weizhang Huang,et al.  Variational mesh adaptation II: error estimates and monitor functions , 2003 .

[3]  Kenji Shimada,et al.  An Angle-Based Approach to Two-Dimensional Mesh Smoothing , 2000, IMR.

[4]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[5]  S. Graf,et al.  Foundations of Quantization for Probability Distributions , 2000 .

[6]  LongChen,et al.  OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .

[7]  Qiang Du,et al.  Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..

[8]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[9]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[10]  Mark T. Jones,et al.  An efficient parallel algorithm for mesh smoothing , 1995 .

[11]  R. B. Simpson,et al.  On optimal interpolation triangle incidences , 1989 .

[12]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[13]  Long Chen,et al.  Multilevel Homotopic Adaptive Finite Element Methods for Convection Dominated Problems , 2005 .

[14]  S. Rippa Long and thin triangles can be good for linear interpolation , 1992 .

[15]  Weizhang Huang,et al.  Variational mesh adaptation: isotropy and equidistribution , 2001 .

[16]  Mark S. Shephard,et al.  Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .

[17]  R. K. Smith,et al.  Mesh Smoothing Using A Posteriori Error Estimates , 1997 .

[18]  P. Gruber Aspects of Approximation of Convex Bodies , 1993 .

[19]  Xuecheng Tai,et al.  Global Convergence of Subspace Correction Methods for Convex Optimization Problems , 1998 .

[20]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[21]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[22]  Long Chen New analysis of the sphere covering problems and optimal polytope approximation of convex bodies , 2005, J. Approx. Theory.

[23]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[24]  Qiang Du,et al.  Grid generation and optimization based on centroidal Voronoi tessellations , 2002, Appl. Math. Comput..

[25]  Martin Berzins A Solution-Based Triangular and Tetrahedral Mesh Quality Indicator , 1998, SIAM J. Sci. Comput..

[26]  Wagdi G. Habashi,et al.  Anisotropic mesh optimization for structured and unstructured meshes , 1997 .

[27]  V. T. Rajan Optimality of the Delaunay triangulation in ℝd , 1994, Discret. Comput. Geom..

[28]  Franz Aurenhammer,et al.  Handbook of Computational Geometry , 2000 .

[29]  Michael Garland,et al.  Optimal triangulation and quadric-based surface simplification , 1999, Comput. Geom..

[30]  Steven Fortune,et al.  Voronoi Diagrams and Delaunay Triangulations , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[31]  Mark S. Shephard,et al.  Automatic three-dimensional mesh generation by the finite octree technique , 1984 .

[32]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1985, SCG '85.

[33]  David Eppstein,et al.  Optimal point placement for mesh smoothing , 1997, SODA '97.

[34]  Lori A. Freitag,et al.  On combining Laplacian and optimization-based mesh smoothing techniques , 1997 .

[35]  Qiang Du,et al.  Anisotropic Centroidal Voronoi Tessellations and Their Applications , 2005, SIAM J. Sci. Comput..