Mesh Smoothing Schemes Based on Optimal Delaunay Triangulations
暂无分享,去创建一个
[1] V. T. Rajan,et al. Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.
[2] Weizhang Huang,et al. Variational mesh adaptation II: error estimates and monitor functions , 2003 .
[3] Kenji Shimada,et al. An Angle-Based Approach to Two-Dimensional Mesh Smoothing , 2000, IMR.
[4] J. Sack,et al. Handbook of computational geometry , 2000 .
[5] S. Graf,et al. Foundations of Quantization for Probability Distributions , 2000 .
[6] LongChen,et al. OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .
[7] Qiang Du,et al. Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..
[8] Qiang Du,et al. Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..
[9] Jonathan Richard Shewchuk,et al. What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.
[10] Mark T. Jones,et al. An efficient parallel algorithm for mesh smoothing , 1995 .
[11] R. B. Simpson,et al. On optimal interpolation triangle incidences , 1989 .
[12] D. A. Field. Laplacian smoothing and Delaunay triangulations , 1988 .
[13] Long Chen,et al. Multilevel Homotopic Adaptive Finite Element Methods for Convection Dominated Problems , 2005 .
[14] S. Rippa. Long and thin triangles can be good for linear interpolation , 1992 .
[15] Weizhang Huang,et al. Variational mesh adaptation: isotropy and equidistribution , 2001 .
[16] Mark S. Shephard,et al. Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .
[17] R. K. Smith,et al. Mesh Smoothing Using A Posteriori Error Estimates , 1997 .
[18] P. Gruber. Aspects of Approximation of Convex Bodies , 1993 .
[19] Xuecheng Tai,et al. Global Convergence of Subspace Correction Methods for Convex Optimization Problems , 1998 .
[20] Raimund Seidel,et al. Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..
[21] I. Babuska,et al. ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .
[22] Long Chen. New analysis of the sphere covering problems and optimal polytope approximation of convex bodies , 2005, J. Approx. Theory.
[23] C. Lawson. Software for C1 Surface Interpolation , 1977 .
[24] Qiang Du,et al. Grid generation and optimization based on centroidal Voronoi tessellations , 2002, Appl. Math. Comput..
[25] Martin Berzins. A Solution-Based Triangular and Tetrahedral Mesh Quality Indicator , 1998, SIAM J. Sci. Comput..
[26] Wagdi G. Habashi,et al. Anisotropic mesh optimization for structured and unstructured meshes , 1997 .
[27] V. T. Rajan. Optimality of the Delaunay triangulation in ℝd , 1994, Discret. Comput. Geom..
[28] Franz Aurenhammer,et al. Handbook of Computational Geometry , 2000 .
[29] Michael Garland,et al. Optimal triangulation and quadric-based surface simplification , 1999, Comput. Geom..
[30] Steven Fortune,et al. Voronoi Diagrams and Delaunay Triangulations , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[31] Mark S. Shephard,et al. Automatic three-dimensional mesh generation by the finite octree technique , 1984 .
[32] Raimund Seidel,et al. Voronoi diagrams and arrangements , 1985, SCG '85.
[33] David Eppstein,et al. Optimal point placement for mesh smoothing , 1997, SODA '97.
[34] Lori A. Freitag,et al. On combining Laplacian and optimization-based mesh smoothing techniques , 1997 .
[35] Qiang Du,et al. Anisotropic Centroidal Voronoi Tessellations and Their Applications , 2005, SIAM J. Sci. Comput..