Exciton interaction with Ce3+ and Ce4+ ions in (LuGd)3(Ga,Al)5O12 ceramics

[1]  V. Pankratov,et al.  Luminescence spectroscopy under synchrotron radiation: From SUPERLUMI to FINESTLUMI , 2020 .

[2]  O. Buzanov,et al.  Luminescence and vacuum ultraviolet excitation spectroscopy of cerium doped Gd3Ga3Al2O12 single crystalline scintillators under synchrotron radiation excitations , 2020 .

[3]  S. Kurosawa,et al.  Research on Efficient Fast Scintillators: Evidence and X‐Ray Absorption Near Edge Spectroscopy Characterization of Ce4+ in Ce3+, Mg2+‐Co‐Doped Gd3Al2Ga3O12 Garnet Crystal , 2019, physica status solidi (b).

[4]  M. Nikl,et al.  Effect of Mg2+ co-doping on the photo- and thermally stimulated luminescence of the (Lu,Gd)3(Ga,Al)5O12:Ce epitaxial films , 2019, Journal of Luminescence.

[5]  P. Rodnyi,et al.  Complex Garnets: Microscopic Parameters Characterizing Afterglow , 2019, The Journal of Physical Chemistry C.

[6]  M. Moszynski,et al.  Scintillation properties of Gd3Al2Ga3O12:Ce, Li and Gd3Al2Ga3O12:Ce, Mg single crystal scintillators: A comparative study , 2019, Optical Materials.

[7]  M. Huttula,et al.  Progress in development of a new luminescence setup at the FinEstBeAMS beamline of the MAX IV laboratory , 2019, Radiation Measurements.

[8]  Y. Zorenko,et al.  Luminescent properties of (La,Lu,Gd)3(Al,Sc,Ga)5O12:Ce mixed garnets under synchrotron radiation excitation , 2018, Journal of Luminescence.

[9]  E. Auffray,et al.  Measurement of non-equilibrium carriers dynamics in Ce-doped YAG, LuAG and GAGG crystals with and without Mg-codoping , 2018 .

[10]  V. Laguta,et al.  Hole Self-Trapping in Y3Al5O12 and Lu3Al5O12 Garnet Crystals , 2017, Physical Review Applied.

[11]  K. Kokko,et al.  FinEstBeaMS – A wide-range Finnish-Estonian Beamline for Materials Science at the 1.5 GeV storage ring at the MAX IV Laboratory , 2017 .

[12]  Stephen A. Payne,et al.  Transparent ceramic garnet scintillator optimization via composition and co-doping for high-energy resolution gamma spectrometers (Conference Presentation) , 2016, Optical Engineering + Applications.

[13]  K. G. V. S. Clauss,et al.  The BALDER Beamline at the MAX IV Laboratory , 2016 .

[14]  Xi-qi Feng,et al.  Towards Bright and Fast Lu3Al5O12:Ce,Mg Optical Ceramics Scintillators , 2016 .

[15]  E. Auffray,et al.  Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd3Al2Ga3O12 crystals , 2016 .

[16]  V. Laguta,et al.  The Stable ${\rm Ce}^{4 + }$ Center: A New Tool to Optimize Ce-Doped Oxide Scintillators , 2016, IEEE Transactions on Nuclear Science.

[17]  K. Kamada,et al.  Energy migration processes in undoped and Ce-doped multicomponent garnet single crystal scintillators , 2015 .

[18]  Xi-qi Feng,et al.  ESR and TSL study of hole and electron traps in LuAG:Ce,Mg ceramic scintillator , 2015 .

[19]  P. Dorenbos,et al.  Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5−xGaxO12 host via conduction band engineering , 2015 .

[20]  A. Voloshinovskii,et al.  Luminescence properties and electronic structure of Ce3+-doped gadolinium aluminum garnet , 2015 .

[21]  Y. Ohashi,et al.  Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd 3 Al 2 Ga 3 O 12 scintillator , 2015 .

[22]  Fang Meng,et al.  Role of Ce4+ in the Scintillation Mechanism of Codoped Gd3Ga3Al2O12∶Ce , 2014 .

[23]  Y. Zorenko,et al.  Development of scintillating screens based on the single crystalline films of Ce doped (Gd,Y)3(Al,Ga,Sc)5O12 multi-component garnets , 2014 .

[24]  Shunsuke Kurosawa,et al.  Defect Engineering in Ce-Doped Aluminum Garnet Single Crystal Scintillators , 2014 .

[25]  Y. Zorenko,et al.  Luminescent properties of the Sc3+ doped single crystalline films of (Y,Lu,La)3(Al,Ga)5O12 multi-component garnets , 2014 .

[26]  Xi-qi Feng,et al.  Effect of Mg2+ co‐doping on the scintillation performance of LuAG:Ce ceramics , 2014 .

[27]  P. Dorenbos,et al.  Evidence and Consequences of Ce $^{4+}$ in LYSO:Ce,Ca and LYSO:Ce,Mg Single Crystals for Medical Imaging Applications , 2013, IEEE Transactions on Nuclear Science.

[28]  V. Mikhailin Synchrotron and undulator radiations and their applications in spectroscopy , 2013 .

[29]  P. Dorenbos Electronic structure and optical properties of the lanthanide activated RE3(Al1−xGax)5O12 (RE=Gd, Y, Lu) garnet compounds , 2013 .

[30]  Urmila Shirwadkar,et al.  Transparent garnet ceramic scintillators for gamma-ray detection , 2012, Optics & Photonics - Optical Engineering + Applications.

[31]  K. Kamada,et al.  Composition Engineering in Cerium-Doped (Lu,Gd)3(Ga,Al)5O12 Single-Crystal Scintillators , 2011 .

[32]  A. Vedda,et al.  Band-gap engineering for removing shallow traps in rare-earth Lu3Al5O12 garnet scintillators using Ga3+ doping , 2011 .

[33]  P. Mateĭchenko,et al.  Growth and the luminescence properties of a lutetium gadolinium garnet doped with Ce3+ and Pr3+ ions , 2011 .

[34]  E. Zych,et al.  Luminescence properties of Y3Al5O12:Ce nanoceramics , 2011 .

[35]  E. Zych,et al.  Author ' s personal copy Luminescence properties of Y 3 Al 5 O 12 : Ce nanoceramics , 2010 .

[36]  M. Nikl,et al.  Luminescence characteristics of LuAG:Pr and YAG:Pr single crystalline films , 2009 .

[37]  M. Satoh,et al.  Characteristics of a Nonstoichiometric Gd 3+δ (Al,Ga) 5−δ O 12 :Ce Garnet Scintillator , 2008 .

[38]  M. Nikl,et al.  Exciton and antisite defect‐related luminescence in Lu3Al5O12 and Y3Al5O12 garnets , 2007 .

[39]  M. Nomura,et al.  Determination of the oxidation state of cerium in rocks by Ce LIII-edge X-ray absorption near-edge structure spectroscopy , 2002 .

[40]  M. Kirma,et al.  INVESTIGATION OF LUMINESCENCE PROPERTIES OF PURE AND Ce DOPED Y3Al5O12 CRYSTALS USING VUV RADIATION , 2002 .

[41]  A. Meijerink,et al.  Extending Dieke's diagram , 2000 .

[42]  M. Balcerzyk,et al.  The carrier capture and recombination processes in Ln/sup 3+/-activated scintillators , 1996 .

[43]  V. Murk,et al.  Exciton and recombination processes in YAG crystals , 1995 .

[44]  Ivanchenko,et al.  Crystal-structure effects in the Ce L3-edge x-ray-absorption spectrum of CeO2: Multiple-scattering resonances and many-body final states. , 1994, Physical review. B, Condensed matter.

[45]  Wachter,et al.  Pressure-induced changes in LIII x-ray-absorption near-edge structure of CeO2 and CeF4: Relevance to 4f-electronic structure. , 1988, Physical review. B, Condensed matter.

[46]  M. Fujisawa,et al.  Optical properties of YAG and YAP single crystals in VUV , 1988 .

[47]  A. Niklas Thermoluminescence of YAG:Nd crystals coloured with x-rays , 1984 .

[48]  D. Robbins,et al.  Optical detection of EPR of recombination centres in YAG , 1980 .

[49]  T. Kushida Energy Transfer and Cooperative Optical Transitions in Rare-Earth Doped Inorganic Materials. I. Transition Probability Calculation , 1973 .