An Introduction to the Analysis of Functional Magnetic Resonance Imaging Data

Functional magnetic resonance imaging (fMRI) is a brain imaging technology primarily used to investigate how cognitive processes affect neural activity. Due to its non-invasiveness and high spatial resolution, this technology has quickly become one of the most important research tools in cognitive neuroscience and has played a growing role in a number of clinical applications. The interpretation of the results of an fMRI experiment involves the analysis of massive amounts of noisy, complex, multivariate data, resolved both spatially and temporally. The extraction of information from this data is a difficult and articulated task, which relies on methodologies lying at the intersection between image processing, statistics, and machine learning. We here introduce the reader to the rich and diverse literature in the fascinating field of fMRI data analysis, providing an overview of its main challenges and of the most common approaches to overcome them.

[1]  M. Lindquist The Statistical Analysis of fMRI Data. , 2008, 0906.3662.

[2]  Jody Tanabe,et al.  See Blockindiscussions, Blockinstats, Blockinand Blockinauthor Blockinprofiles Blockinfor Blockinthis Blockinpublication Comparison Blockinof Blockindetrending Blockinmethods Blockinfor Optimal Blockinfmri Blockinpreprocessing , 2022 .

[3]  Tom M. Mitchell,et al.  Learning to Decode Cognitive States from Brain Images , 2004, Machine Learning.

[4]  S. Ogawa,et al.  BOLD Based Functional MRI at 4 Tesla Includes a Capillary Bed Contribution: Echo‐Planar Imaging Correlates with Previous Optical Imaging Using Intrinsic Signals , 1995, Magnetic resonance in medicine.

[5]  Alan C. Evans,et al.  Event-Related fMRI of the Auditory Cortex , 1998, NeuroImage.

[6]  Stephen M. Smith,et al.  Functional MRI : an introduction to methods , 2002 .

[7]  David Borsook,et al.  A role for fMRI in optimizing CNS drug development , 2006, Nature Reviews Drug Discovery.

[8]  F Barkhof,et al.  fMRI of visual encoding: Reproducibility of activation , 1999, Human brain mapping.

[9]  G H Glover,et al.  Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR , 2000, Magnetic resonance in medicine.

[10]  Jens Frahm,et al.  On the Effects of Spatial Filtering—A Comparative fMRI Study of Episodic Memory Encoding at High and Low Resolution , 2002, NeuroImage.

[11]  Tom M. Mitchell,et al.  Training fMRI Classifiers to Detect Cognitive States across Multiple Human Subjects , 2003, NIPS 2003.

[12]  A. Dale,et al.  Functional-Anatomic Correlates of Object Priming in Humans Revealed by Rapid Presentation Event-Related fMRI , 1998, Neuron.

[13]  Nikolaus Kriegeskorte,et al.  Comparison of multivariate classifiers and response normalizations for pattern-information fMRI , 2010, NeuroImage.

[14]  Stephen C. Strother,et al.  Support vector machines for temporal classification of block design fMRI data , 2005, NeuroImage.

[15]  Scott L. Zeger,et al.  Non‐linear Fourier Time Series Analysis for Human Brain Mapping by Functional Magnetic Resonance Imaging , 1997 .

[16]  P. Roland,et al.  Comparison of spatial normalization procedures and their impact on functional maps , 2002, Human brain mapping.

[17]  I. Tracey,et al.  The role of fMRI in drug discovery , 2006, Journal of magnetic resonance imaging : JMRI.

[18]  Moo Kwon Chung Deformation-Based Morphometry , 2012 .

[19]  Regula S Briellmann,et al.  Brief breath holding may confound functional magnetic resonance imaging studies , 2005, Human brain mapping.

[20]  R. Buxton,et al.  Modeling the hemodynamic response to brain activation , 2004, NeuroImage.

[21]  Thomas Stephan,et al.  Lid Closure Mimics Head Movement in fMRI , 2002, NeuroImage.

[22]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[23]  J. Rajapakse,et al.  Human Brain Mapping 6:283–300(1998) � Modeling Hemodynamic Response for Analysis of Functional MRI Time-Series , 2022 .

[24]  Emily B. Falk,et al.  Predicting Persuasion-Induced Behavior Change from the Brain , 2010, The Journal of Neuroscience.

[25]  R. Buckner,et al.  Dissociating State and Item Components of Recognition Memory Using fMRI , 2001, NeuroImage.

[26]  G. Barker,et al.  Study design in fMRI: Basic principles , 2006, Brain and Cognition.

[27]  Rainer Goebel,et al.  Information-based functional brain mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Trevor S. Smart,et al.  The Statistical Analysis of Functional MRI Data , 2010 .

[29]  L. Freire,et al.  Motion Correction Algorithms May Create Spurious Brain Activations in the Absence of Subject Motion , 2001, NeuroImage.

[30]  K H Chuang,et al.  IMPACT: Image‐based physiological artifacts estimation and correction technique for functional MRI , 2001, Magnetic resonance in medicine.

[31]  Adriaan Moelker,et al.  Acoustic noise concerns in functional magnetic resonance imaging , 2003, Human brain mapping.

[32]  Bernard Gallez,et al.  Cluster analysis of BOLD fMRI time series in tumors to study the heterogeneity of hemodynamic response to treatment , 2003, Magnetic resonance in medicine.

[33]  J. Gabrieli,et al.  Rethinking Feelings: An fMRI Study of the Cognitive Regulation of Emotion , 2002, Journal of Cognitive Neuroscience.

[34]  Rajesh Nandy,et al.  Cluster analysis of fMRI data using dendrogram sharpening , 2003, Human brain mapping.

[35]  Liu Rui,et al.  Fuzzy c-Means Clustering Algorithm , 2008 .

[36]  B. T. Thomas Yeo,et al.  The Organization of Local and Distant Functional Connectivity in the Human Brain , 2010, PLoS Comput. Biol..

[37]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[38]  C. Stippich,et al.  Diagnostic benefits of presurgical fMRI in patients with brain tumours in the primary sensorimotor cortex , 2011, European Radiology.

[39]  V D Calhoun,et al.  Spatial and temporal independent component analysis of functional MRI data containing a pair of task‐related waveforms , 2001, Human brain mapping.

[40]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[41]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[42]  Ewald Moser,et al.  Wavelet-based multifractal analysis of fMRI time series , 2004, NeuroImage.

[43]  L. K. Hansen,et al.  On Clustering fMRI Time Series , 1999, NeuroImage.

[44]  Tom M. Mitchell,et al.  Classifying Instantaneous Cognitive States from fMRI Data , 2003, AMIA.

[45]  C. Windischberger,et al.  Quantification in functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis. , 1998, Magnetic resonance imaging.

[46]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[47]  X Hu,et al.  Retrospective estimation and correction of physiological fluctuation in functional MRI , 1995, Magnetic resonance in medicine.

[48]  Karl J. Friston,et al.  Event‐related f MRI , 1997, Human brain mapping.

[49]  R Baumgartner,et al.  A hierarchical clustering method for analyzing functional MR images. , 1999, Magnetic resonance imaging.

[50]  M. Greicius,et al.  Resting-state functional connectivity reflects structural connectivity in the default mode network. , 2009, Cerebral cortex.

[51]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[52]  M. D’Esposito,et al.  The Variability of Human, BOLD Hemodynamic Responses , 1998, NeuroImage.

[53]  Karl J. Friston,et al.  Stochastic Designs in Event-Related fMRI , 1999, NeuroImage.

[54]  M. Brammer Head motion and its correction , 2001 .

[55]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[56]  Xiaoping P. Hu,et al.  Real‐time fMRI using brain‐state classification , 2007, Human brain mapping.

[57]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[58]  Jonathan D. Cohen,et al.  The Neural Basis of Economic Decision-Making in the Ultimatum Game , 2003, Science.

[59]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Stephen M. Smith Preparing fMRI data for statistical analysis , 2001 .

[61]  E. Bullmore,et al.  Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function. , 2005, Brain : a journal of neurology.

[62]  Tom M. Mitchell,et al.  Machine learning classifiers and fMRI: A tutorial overview , 2009, NeuroImage.

[63]  John W Krakauer,et al.  Early imaging correlates of subsequent motor recovery after stroke , 2009, Annals of neurology.

[64]  Klaus P. Ebmeier,et al.  fMRI correlates of state and trait effects in subjects at genetically enhanced risk of schizophrenia. , 2003, Brain : a journal of neurology.

[65]  Geoffrey J. Gordon,et al.  The support vector decomposition machine , 2006, ICML.

[66]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[67]  S. Ruan,et al.  A multistep Unsupervised Fuzzy Clustering Analysis of fMRI time series , 2000, Human brain mapping.

[68]  L. K. Hansen,et al.  Generalizable Patterns in Neuroimaging: How Many Principal Components? , 1999, NeuroImage.

[69]  Claus Svarer,et al.  Cluster analysis of activity‐time series in motor learning , 2002, Human brain mapping.

[70]  Jonathan Smallwood,et al.  Mind-Wandering, Awareness and Task-Performance: an fMRI study , 2007 .

[71]  Jun Ye,et al.  Geostatistical analysis in clustering fMRI time series , 2009, Statistics in medicine.

[72]  Rainer Goebel,et al.  Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers , 2007, NeuroImage.

[73]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[74]  Karl J. Friston,et al.  Identifying global anatomical differences: Deformation‐based morphometry , 1998 .

[75]  Nava Rubin,et al.  Cluster-based analysis of FMRI data , 2006, NeuroImage.

[76]  J. Hajnal,et al.  Artifacts due to stimulus correlated motion in functional imaging of the brain , 1994, Magnetic resonance in medicine.

[77]  Kaustubh Supekar,et al.  Sparse logistic regression for whole-brain classification of fMRI data , 2010, NeuroImage.

[78]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[79]  J L Lancaster,et al.  Automated Talairach Atlas labels for functional brain mapping , 2000, Human brain mapping.