ImproteK: Introducing Scenarios into Human-Computer Music Improvisation

This article focuses on the introduction of control, authoring, and composition in human-computer music improvisation through the description of a guided music generation model and a reactive architecture, both implemented in the software ImproteK. This interactive music system is used with expert improvisers in work sessions and performances of idiomatic and pulsed music and more broadly in situations of structured or composed improvisation. The article deals with the integration of temporal specifications in the music generation process by means of a fixed or dynamic “scenario” and addresses the issue of the dialectic between reactivity and planning in interactive music improvisation. It covers the different levels involved in machine improvisation: the integration of anticipation relative to a predefined structure in a guided generation process at a symbolic level, an architecture combining this anticipation with reactivity using mixed static/dynamic scheduling techniques, and an audio rendering module performing live re-injection of captured material in synchrony with a non-metronomic beat. Finally, it sketches a framework to compose improvisation sessions at the scenario level, extending the initial musical scope of the system. All of these points are illustrated by videos of performances or work sessions with musicians.

[1]  Gérard Assayag,et al.  Guided improvisation as dynamic calls to an offline model , 2015 .

[2]  Jean-Louis Giavitto,et al.  A reactive extension of the OpenMusic visual programming language , 2014, J. Vis. Lang. Comput..

[3]  Marc Chemillier,et al.  Improtek: Integrating harmonic Controls into Improvisation in the filiation of Omax , 2012, ICMC.

[4]  Gérard Assayag,et al.  OMaxist Dialectics: Capturing, Visualizing and Expanding Improvisations , 2012, NIME.

[5]  Marc Chemillier Toward a formal study of jazz chord sequences generated by Steedman’s grammar , 2004, Soft Comput..

[6]  Maxime Crochemore,et al.  Factor Oracle: A New Structure for Pattern Matching , 1999, SOFSEM.

[7]  Elaine Chew,et al.  Mimi4x: An interactive audio-visual installation for high-level structural improvisation , 2010, 2010 IEEE International Conference on Multimedia and Expo.

[8]  François Pachet,et al.  Virtualband: Interacting with Stylistically Consistent Agents , 2013, ISMIR.

[9]  Jean Bresson,et al.  Planning and Scheduling Actions in a Computer-Aided Music Composition System , 2015 .

[10]  Stephen Alstrup,et al.  Nearest Common Ancestors: A Survey and a New Algorithm for a Distributed Environment , 2004, Theory of Computing Systems.

[11]  Shlomo Dubnov,et al.  Feature Selection and Composition Using PyOracle , 2013, MUME@AIIDE.

[12]  Edward W. Large,et al.  Periodicity, Pattern Formation, and Metric Structure , 2001 .

[13]  Wojciech Rytter,et al.  Computing the Longest Previous Factor , 2013, Eur. J. Comb..

[14]  Maxime Crochemore,et al.  Algorithms on strings , 2007 .

[15]  Gérard Assayag,et al.  Computer Assisted Composition today. , 1998 .

[16]  Sanjit A. Seshia,et al.  Machine Improvisation with Formal Specifications , 2014, ICMC.

[17]  Jean-Louis Giavitto,et al.  A Dynamic Timed-Language for Computer-Human Musical Interaction , 2013 .

[18]  A. Röbel A NEW APPROACH TO TRANSIENT PROCESSING IN THE PHASE VOCODER , 2003 .

[19]  Shlomo Dubnov,et al.  Guessing the Composer's Mind: Applying Universal Prediction to Musical Style , 1999, ICMC.

[20]  George Sioros and Carlos Guedes,et al.  A Formal Approach for High-Level Automatic Rhythm Generation , 2011 .

[21]  Jérôme Nika,et al.  Guiding human-computer music improvisation: introducing authoring and control with temporal scenarios. (Guider l'improvisation musicale homme-machine : introduire du contrôle et de la composition avec des scénarios temporels) , 2016 .

[22]  Laurent Bonnasse-Gahot An update on the SOMax project , 2014 .

[23]  Wojciech Rytter,et al.  Order-Preserving Suffix Trees and Their Algorithmic Applications , 2013, ArXiv.

[24]  Axel Chemla--Romeu-Santos Guidages de l'improvisation , 2015 .

[25]  Carlos Guedes,et al.  Complexity Driven Recombination of MIDI Loops , 2011, ISMIR.

[26]  John A. Sloboda 16 – Music Performance , 1982 .

[27]  Gérard Assayag,et al.  Navigating the Oracle: a Heuristic Approach , 2007, ICMC.

[28]  Peter Weiner,et al.  Linear Pattern Matching Algorithms , 1973, SWAT.

[29]  Sanjit A. Seshia,et al.  Control Improvisation , 2014, FSTTCS.

[30]  Jeff Pressing,et al.  Cognitive Processes in Improvisation , 1984 .

[31]  François Pachet,et al.  Markov constraints: steerable generation of Markov sequences , 2010, Constraints.

[32]  E. Large,et al.  The dynamics of attending: How people track time-varying events. , 1999 .

[33]  Gérard Assayag,et al.  OpenMusic: visual programming environment for music composition, analysis and research , 2011, ACM Multimedia.

[34]  François Pachet,et al.  Creating Music and Texts with Flow Machines , 2016 .

[35]  Marc Chemillier,et al.  Improvisation musicale homme-machine guidée par un scénario temporel , 2014, Tech. Sci. Informatiques.

[36]  François Pachet,et al.  Reflexive loopers for solo musical improvisation , 2013, CHI.

[37]  L. Shaffer 26 Analysing Piano Performance: A Study of Concert Pianists , 1980 .

[38]  Roger B. Dannenberg,et al.  Real-time scheduling and computer accompaniment , 1989 .

[39]  Gerald Hushlak,et al.  Creativity in the Twenty-First Century , 2010 .

[40]  Ran El-Yaniv,et al.  Universal Classification Applied to Musical Sequences , 1998, ICMC.

[41]  Shlomo Dubnov,et al.  OMax brothers: a dynamic yopology of agents for improvization learning , 2006, AMCMM '06.

[42]  Shlomo Dubnov,et al.  Guided Music Synthesis with Variable Markov Oracle , 2014, MUME@AIIDE.

[43]  Jean-Louis Giavitto,et al.  Operational semantics of a domain specific language for real time musician–computer interaction , 2013, Discret. Event Dyn. Syst..

[44]  Derek Bailey Improvisation: Its nature and practice in music , 1980 .

[45]  Andrea Agostini,et al.  Real-Time Computer-Aided Composition with bach , 2013 .

[46]  Donald E. Knuth,et al.  Fast Pattern Matching in Strings , 1977, SIAM J. Comput..

[47]  Philippe Depalle,et al.  SVP: A Modular System for Analysis, Processing and Synthesis of Sound Signals , 1991, ICMC.

[48]  Marc Chemillier L’improvisation musicale et l’ordinateur: Transcrire la musique à l’ère de l’image animée , 2009 .

[49]  Jean-Louis Giavitto,et al.  Planning Human-Computer Improvisation , 2014, ICMC.

[50]  Robert Rowe,et al.  The aesthetics of interactive music systems , 1999 .

[51]  Miller S. Puckette,et al.  Combining Event and Signal Processing in the MAX Graphical Programming Environment , 1991 .

[52]  C. Palmer Music performance. , 1997, Annual review of psychology.

[53]  M. Crochemore,et al.  Algorithms on Strings: Tools , 2007 .

[54]  Arshia Cont,et al.  Antescofo: Anticipatory Synchronization and control of Interactive parameters in Computer Music , 2008, ICMC.

[55]  Robert S. Boyer,et al.  A fast string searching algorithm , 1977, CACM.

[56]  Shlomo Dubnov,et al.  Using Factor Oracles for Machine Improvisation , 2004, Soft Comput..

[57]  François Pachet,et al.  Capturing a Musician's Groove: Generation of Realistic Accompaniments from Single Song Recordings , 2015, IJCAI.