A switch in a cage with a memory.

[structure: see text] Chemical and optical stimulations control the interconversion of a three-state molecular switch trapped inside a silica monolith. The resulting absorbance changes in the visible region can be exploited to reproduce a sequential logic operator with one optical input and one optical output. This strategy to transfer operating principles for digital processing from bulk solutions to rigid materials can lead to the development of chemical logic gates based on functional solid components.

[1]  J. Fraser Stoddart,et al.  Electrochemically Induced Molecular Motions in Pseudorotaxanes: A Case of Dual‐Mode (Oxidative and Reductive) Dethreading , 1997 .

[2]  H. T. Baytekin,et al.  A molecular NAND gate based on Watson-Crick base pairing. , 2000, Organic letters.

[3]  A. P. D. S. and,et al.  Proof-of-Principle of Molecular-Scale Arithmetic , 2000 .

[4]  A. P. de Silva,et al.  Simultaneously multiply-configurable or superposed molecular logic systems composed of ICT (internal charge transfer) chromophores and fluorophores integrated with one- or two-ion receptors. , 2002, Chemistry.

[5]  Terence E. Rice,et al.  Integration of Logic Functions and Sequential Operation of Gates at the Molecular-Scale , 1999 .

[6]  T. Gunnlaugsson,et al.  Lanthanide macrocyclic quinolyl conjugates as luminescent molecular-level devices. , 2001, Journal of the American Chemical Society.

[7]  R. Levine,et al.  Molecular logic by optical spectroscopy with output transfer by charge migration along a peptide , 2002 .

[8]  J. Fraser Stoddart,et al.  Logic Operations at the Molecular Level. An XOR Gate Based on a Molecular Machine , 1997 .

[9]  F. Diederich,et al.  Photoswitchable Tetraethynylethene‐Dihydroazulene Chromophores , 2001 .

[10]  U. Schubert,et al.  Aerogels-Airy Materials: Chemistry, Structure, and Properties. , 1998, Angewandte Chemie.

[11]  Reza Dabestani,et al.  Supramolecular fluorescent probes for the detection of mixed alkali metal ions that mimic the function of integrated logic gates , 2002 .

[12]  A. P. de Silva,et al.  Luminescent sensors and photonic switches , 2001 .

[13]  Françoise Remacle,et al.  Intermolecular and intramolecular logic gates , 2001 .

[14]  Françisco M Raymo,et al.  Memory effects based on intermolecular photoinduced proton transfer. , 2003, Journal of the American Chemical Society.

[15]  Reza Dabestani,et al.  A Supramolecular Fluorescent Probe, Activated by Protons To Detect Cesium and Potassium Ions, Mimics the Function of a Logic Gate , 2000 .

[16]  Sanjib Ghosh,et al.  NI(II), CU(II), AND ZN(II) CRYPTATE-ENHANCED FLUORESCENCE OF A TRIANTHRYLCRYPTAND : A POTENTIAL MOLECULAR PHOTONIC OR OPERATOR , 1996 .

[17]  Logische Schaltungen mit leuchtenden Molekülen , 2001 .

[18]  Fernando Pina,et al.  Micelle effect on the ‘write–lock–read–unlock–erase’ cycle of 4′-hydroxyflavylium ion , 1999 .

[19]  Françisco M Raymo,et al.  Digital processing with a three-state molecular switch. , 2003, The Journal of organic chemistry.

[20]  Garry Berkovic,et al.  Spiropyrans and Spirooxazines for Memories and Switches. , 2000, Chemical reviews.

[21]  Fernando Pina,et al.  Artificial Chemical Systems Capable of Mimicking Some Elementary Properties of Neurons , 2000 .

[22]  R. Levine,et al.  IR-UV Double-Resonance Photodissociation of Nitric Acid (HONO2 ) Viewed as Molecular Information Processing. , 2001, Angewandte Chemie.

[23]  Sanjib Ghosh,et al.  Transition metal (II)/(III), Eu(III), and Tb(III) ions induced molecular photonic OR gates using trianthryl cryptands of varying cavity dimension , 1997 .

[24]  David Parker,et al.  Taking advantage of the pH and pO2 sensitivity of a luminescent macrocyclic terbium phenanthridyl complex , 1998 .

[25]  Paul Seiler,et al.  A Novel Three-Way Chromophoric Molecular Switch: pH and Light Controllable Switching Cycles. , 1999, Angewandte Chemie.

[26]  C. McCoy,et al.  A molecular photoionic AND gate based on fluorescent signalling , 1993, Nature.

[27]  Gareth Brown,et al.  Molecules that add up , 2002 .

[28]  E. Akkaya,et al.  Novel squaraine signalling Zn(II) ions: three-state fluorescence response to a single input , 2000 .

[29]  F. Raymo,et al.  Signal processing at the molecular level. , 2001, Journal of the American Chemical Society.

[30]  F. Raymo,et al.  Digital communication through intermolecular fluorescence modulation. , 2001, Organic letters.

[31]  David Avnir,et al.  Organic Chemistry within Ceramic Matrixes: Doped Sol-Gel Materials , 1995 .

[32]  Françisco M Raymo,et al.  Multichannel digital transmission in an optical network of communicating molecules. , 2002, Journal of the American Chemical Society.

[33]  Thorfinnur Gunnlaugsson,et al.  Luminescent molecular logic gates: the two-input inhibit (INH) function , 2000 .

[34]  Vincenzo Balzani,et al.  Molecular logic circuits. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  Françoise Remacle,et al.  Towards a molecular logic machine , 2001 .

[36]  M. Ward Chemistry and Molecular Electronics: New Molecules as Wires, Switches, and Logic Gates , 2001 .

[37]  L. Hench,et al.  The sol-gel process , 1990 .

[38]  A. P. Silva,et al.  Molecular Photoionic AND Logic Gates with Bright Fluorescence and “Off−On” Digital Action , 1997 .

[39]  Françoise Remacle,et al.  On spectroscopy, control, and molecular information processing. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[40]  Fernando Pina,et al.  Photochromic flavylium compounds as multistate/multifunction molecular-level systems , 1999 .

[41]  F. Raymo Digital processing and communication with molecular switches , 2002 .

[42]  F Remacle,et al.  Logic gates using high Rydberg states , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Françisco M Raymo,et al.  All-optical processing with molecular switches , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[44]  R. Levine,et al.  A molecular logic gate. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Glenn E. M. Maguire,et al.  ‘Off–on’ fluorescent sensors for physiological levels of magnesium ions based on photoinduced electron transfer (PET), which also behave as photoionic OR logic gates , 1994 .

[46]  H. Gesser,et al.  Aerogels and related porous materials , 1989 .

[47]  Engin U Akkaya,et al.  Modulation of boradiazaindacene emission by cation-mediated oxidative PET. , 2002, Organic letters.

[48]  Fernando Pina,et al.  Multistate/Multifunctional Molecular‐Level Systems: Light and pH Switching between the Various Forms of a Synthetic Flavylium Salt , 1998 .

[49]  F. Raymo,et al.  Signal communication between molecular switches. , 2001, Organic letters.