High-dimensional Covariance Estimation Based On Gaussian Graphical Models
暂无分享,去创建一个
Min Xu | Peter Bühlmann | Shuheng Zhou | Philipp Rütimann | P. Bühlmann | Min Xu | Shuheng Zhou | Philipp Rütimann
[1] Trevor Hastie,et al. Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.
[2] P. Bickel,et al. Regularized estimation of large covariance matrices , 2008, 0803.1909.
[3] R. Adamczak,et al. Restricted Isometry Property of Matrices with Independent Columns and Neighborly Polytopes by Random Sampling , 2009, 0904.4723.
[4] Jianhua Z. Huang,et al. Covariance matrix selection and estimation via penalised normal likelihood , 2006 .
[5] Nicolai Meinshausen,et al. Relaxed Lasso , 2007, Comput. Stat. Data Anal..
[6] Peng Zhao,et al. On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..
[7] T. Bengtsson,et al. Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants , 2007 .
[8] H. Zou,et al. One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.
[9] Shuheng Zhou. Restricted Eigenvalue Conditions on Subgaussian Random Matrices , 2009, 0912.4045.
[10] Bin Yu,et al. High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence , 2008, 0811.3628.
[11] T. Richardson,et al. Estimation of a covariance matrix with zeros , 2005, math/0508268.
[12] Cun-Hui Zhang. Discussion: One-step sparse estimates in nonconcave penalized likelihood models , 2008, 0808.1025.
[13] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[14] Pei Wang,et al. Partial Correlation Estimation by Joint Sparse Regression Models , 2008, Journal of the American Statistical Association.
[15] Peter Buhlmann,et al. High dimensional sparse covariance estimation via directed acyclic graphs , 2009, 0911.2375.
[16] Shuheng Zhou. Thresholded Lasso for high dimensional variable selection and statistical estimation , 2010, 1002.1583.
[17] R. Spang,et al. Predicting the clinical status of human breast cancer by using gene expression profiles , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[18] S. Geer,et al. Adaptive Lasso for High Dimensional Regression and Gaussian Graphical Modeling , 2009, 0903.2515.
[19] I. Johnstone. Chi-square oracle inequalities , 2000 .
[20] N. Meinshausen,et al. LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA , 2008, 0806.0145.
[21] Alexandre d'Aspremont,et al. Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .
[22] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[23] Caroline Uhler,et al. Geometry of maximum likelihood estimation in Gaussian graphical models , 2010, 1012.2643.
[24] P. Bühlmann,et al. Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana , 2004, Genome Biology.
[25] M. Yuan,et al. Model selection and estimation in the Gaussian graphical model , 2007 .
[26] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[27] Alexandre d'Aspremont,et al. First-Order Methods for Sparse Covariance Selection , 2006, SIAM J. Matrix Anal. Appl..
[28] Shuheng Zhou,et al. 25th Annual Conference on Learning Theory Reconstruction from Anisotropic Random Measurements , 2022 .
[29] Nicolas Verzelen,et al. Adaptive estimation of covariance matrices via Cholesky decomposition , 2010, 1010.1445.
[30] Larry A. Wasserman,et al. Time varying undirected graphs , 2008, Machine Learning.
[31] N. Meinshausen. A note on the Lasso for Gaussian graphical model selection , 2008 .
[32] M. Wainwright,et al. HIGH-DIMENSIONAL COVARIANCE ESTIMATION BY MINIMIZING l1-PENALIZED LOG-DETERMINANT DIVERGENCE BY PRADEEP RAVIKUMAR , 2009 .
[33] Shuheng Zhou,et al. Thresholding Procedures for High Dimensional Variable Selection and Statistical Estimation , 2009, NIPS.
[34] Adam J. Rothman,et al. Sparse estimation of large covariance matrices via a nested Lasso penalty , 2008, 0803.3872.
[35] Adam J. Rothman,et al. Sparse permutation invariant covariance estimation , 2008, 0801.4837.
[36] Xiao-Li Meng,et al. Discussion: One-step sparse estimates in nonconcave penalized likelihood models: Who cares if it is a white cat or a black cat? , 2008, 0808.1016.
[37] T. Cai,et al. A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.
[38] Jianqing Fan,et al. Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.
[39] P. Bickel,et al. Some theory for Fisher''s linear discriminant function , 2004 .
[40] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[41] Jianqing Fan,et al. NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES. , 2009, The annals of applied statistics.
[42] S. Geer,et al. The adaptive and the thresholded Lasso for potentially misspecified models (and a lower bound for the Lasso) , 2011 .
[43] Ming Yuan,et al. High Dimensional Inverse Covariance Matrix Estimation via Linear Programming , 2010, J. Mach. Learn. Res..
[44] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[45] Peter Bühlmann,et al. High dimensional sparse covariance estimation via directed acyclic graphs , 2009 .
[46] M. Pourahmadi,et al. Nonparametric estimation of large covariance matrices of longitudinal data , 2003 .