Adaptation of Oriented and Unoriented Color-Selective Neurons in Human Visual Areas

Primary visual cortex contains at least two distinct populations of color-selective cells: neurons in one have circularly symmetric receptive fields and respond best to reddish and greenish light, while neurons in another have oriented receptive fields and a variety of color preferences. The relative prevalence and perceptual roles of the two kinds of neurons remain controversial, however. We used fMRI and a selective adaptation technique to measure responses attributable to these two populations. The technique revealed evidence of adaptation in both populations and indicated that they each produced strong signals in V1 and other human visual areas. The activity of both sets of neurons was also reflected in color appearance measurements made with the same stimuli. Thus, both oriented and unoriented color-selective cells in V1 are important components of the neural pathways that underlie perception of color.

[1]  Arthur Bradley,et al.  Orientation and spatial frequency selectivity of adaptation to color and luminance gratings , 1988, Vision Research.

[2]  J. B. Levitt,et al.  Receptive fields and functional architecture of macaque V2. , 1994, Journal of neurophysiology.

[3]  Guillermo Sapiro,et al.  Creating connected representations of cortical gray matter for functional MRI visualization , 1997, IEEE Transactions on Medical Imaging.

[4]  S. Zeki,et al.  A century of cerebral achromatopsia. , 1990, Brain : a journal of neurology.

[5]  D. V. van Essen,et al.  Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  C. Furmanski,et al.  Selective Adaptation to Color Contrast in Human Primary Visual Cortex , 2001, The Journal of Neuroscience.

[7]  J. Movshon,et al.  Chromatic properties of neurons in macaque MT , 1994, Visual Neuroscience.

[8]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[9]  P. Lennie,et al.  Rapid adaptation in visual cortex to the structure of images. , 1999, Science.

[10]  J. Gallant,et al.  A Human Extrastriate Area Functionally Homologous to Macaque V4 , 2000, Neuron.

[11]  Hong Zhou,et al.  The coding of uniform colour figures in monkey visual cortex , 2003, The Journal of physiology.

[12]  D. Kiper,et al.  Chromatic properties of neurons in macaque area V2 , 1997, Visual Neuroscience.

[13]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[14]  Brian A Wandell,et al.  Perceived Speed of Colored Stimuli , 1999, Neuron.

[15]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[16]  The spatial transformation of color in the primary visual cortex of the macaque monkey , 2001 .

[17]  S. Engel,et al.  Color opponent neurons in V1: a review and model reconciling results from imaging and single-unit recording. , 2002, Journal of vision.

[18]  R. Shapley,et al.  Cone inputs in macaque primary visual cortex. , 2004, Journal of Neurophysiology.

[19]  Bevil R. Conway,et al.  Color contrast in macaque V1. , 2002, Cerebral cortex.

[20]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[21]  B. Wandell,et al.  Appearance of colored patterns: pattern-color separability. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  Patrick Cavanagh,et al.  Independent orientation-selective mechanisms for the cardinal directions of colour space , 1990, Vision Research.

[23]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[24]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[25]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[26]  D. Ts'o,et al.  Color processing in macaque striate cortex: electrophysiological properties. , 2002, Journal of neurophysiology.

[27]  R. Desimone,et al.  Spectral properties of V4 neurons in the macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  Edward T. Bullmore,et al.  The functional anatomy of the McCollough contingent colour after-effect. , 1999, Neuroreport.

[29]  G. Boynton,et al.  Orientation-Specific Adaptation in Human Visual Cortex , 2003, The Journal of Neuroscience.

[30]  E. Chichilnisky,et al.  Adaptation to Temporal Contrast in Primate and Salamander Retina , 2001, The Journal of Neuroscience.

[31]  A. Leventhal,et al.  Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[33]  Colin W G Clifford,et al.  Interactions between color and luminance in the perception of orientation. , 2003, Journal of vision.

[34]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  R. L. Valois,et al.  Some transformations of color information from lateral geniculate nucleus to striate cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[37]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  B. Wandell,et al.  Visualization and Measurement of the Cortical Surface , 2000, Journal of Cognitive Neuroscience.

[39]  Maria V. Sanchez-Vives,et al.  Membrane Mechanisms Underlying Contrast Adaptation in Cat Area 17In Vivo , 2000, The Journal of Neuroscience.

[40]  D. G. Albrecht,et al.  Spatial mapping of monkey VI cells with pure color and luminance stimuli , 1984, Vision Research.

[41]  R. Shapley,et al.  The spatial transformation of color in the primary visual cortex of the macaque monkey , 2001, Nature Neuroscience.

[42]  K R Gegenfurtner,et al.  Processing of color, form, and motion in macaque area V2 , 1996, Visual Neuroscience.

[43]  G. Boynton,et al.  Orientation-Specific Adaptation in Human Visual Cortex , 2003, The Journal of Neuroscience.

[44]  M. Carandini,et al.  A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. , 1997, Science.

[45]  M. Pinsk,et al.  Attention modulates responses in the human lateral geniculate nucleus , 2002, Nature Neuroscience.

[46]  L. P. O'Keefe,et al.  Adaptation to contingencies in macaque primary visual cortex. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[47]  D. Ts'o,et al.  Color processing in macaque striate cortex: relationships to ocular dominance, cytochrome oxidase, and orientation. , 2002, Journal of neurophysiology.

[48]  S. Zeki,et al.  The functional organization of area V2, I: Specialization across stripes and layers , 2002, Visual Neuroscience.

[49]  P. Lennie,et al.  Profound Contrast Adaptation Early in the Visual Pathway , 2004, Neuron.

[50]  J. Movshon,et al.  Neuronal Adaptation to Visual Motion in Area MT of the Macaque , 2003, Neuron.

[51]  Brian A Wandell,et al.  Color Signals in Human Motion-Selective Cortex , 1999, Neuron.

[52]  E. Seidemann,et al.  Color Signals in Area MT of the Macaque Monkey , 1999, Neuron.

[53]  M. Sur,et al.  Adaptation-Induced Plasticity of Orientation Tuning in Adult Visual Cortex , 2000, Neuron.

[54]  K. Gegenfurtner,et al.  Cortical mechanisms of colour vision , 2003, Nature Reviews Neuroscience.

[55]  Bevil R. Conway,et al.  Spatial Structure of Cone Inputs to Color Cells in Alert Macaque Primary Visual Cortex (V-1) , 2001, The Journal of Neuroscience.