Robust output‐control for uncertain linear systems: Homogeneous differentiator‐based observer approach

This paper deals with the design of a robust control for linear systems with external disturbances using a homogeneous differentiator-based observer based on a implicit Lyapunov function approach. Sufficient conditions for stability of the closed-loop system in the presence of external disturbances are obtained and represented by linear matrix inequalities. The parameter tuning for both controller and observer is formulated as a semi-definite programming problem with linear matrix inequalities constraints. Simulation results illustrate the feasibility of the proposed approach and some improvements with respect to the classic linear observer approach.

[1]  A. Bacciotti,et al.  Liapunov functions and stability in control theory , 2001 .

[2]  Boris T. Polyak,et al.  Suppression of bounded exogenous disturbances: Output feedback , 2008 .

[3]  Yury Orlov,et al.  Advanced H∞ Control , 2014 .

[4]  A. Flemming,et al.  Soft variable-structure controls: a survey , 2004, Autom..

[5]  Alexander S. Poznyak,et al.  Observation of linear systems with unknown inputs via high-order sliding-modes , 2007, Int. J. Syst. Sci..

[6]  Leonid M. Fridman,et al.  Uniform Robust Exact Differentiator , 2011, IEEE Trans. Autom. Control..

[7]  S. Spurgeon,et al.  Advances in Sliding Mode Control , 2013 .

[8]  Alexander S. Poznyak,et al.  Attractive Ellipsoids in Robust Control , 2014 .

[9]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[10]  Andrey Polyakov,et al.  Finite-time and fixed-time stabilization: Implicit Lyapunov function approach , 2015, Autom..

[11]  D. N. Wormley,et al.  Ellipsoidal Set-Theoretic Control Synthesis , 1982 .

[12]  Andrey Polyakov,et al.  Finite-Time Stabilization Using Implicit Lyapunov Function Technique , 2013, NOLCOS.

[13]  V. I. Korobov A GENERAL APPROACH TO THE SOLUTION OF THE BOUNDED CONTROL SYNTHESIS PROBLEM IN A CONTROLLABILITY PROBLEM , 1980 .

[14]  A. Poznyak,et al.  Output linear controller for a class of nonlinear systems using the invariant ellipsoid technique , 2009, 2009 American Control Conference.

[15]  Andrey Polyakov,et al.  Finite-time attractive ellipsoid method: implicit Lyapunov function approach , 2016, Int. J. Control.

[16]  C. F. Long,et al.  Influence of the manufacturing process on the scheduling problem , 1976 .

[17]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[18]  Eduardo Sontag,et al.  Forward Completeness, Unboundedness Observability, and their Lyapunov Characterizations , 1999 .

[19]  Christopher Edwards,et al.  Sliding Mode Control and Observation , 2013 .

[20]  Peter Dorato,et al.  An Overview of Finite-Time Stability , 2006 .

[21]  Andrey Polyakov,et al.  Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems , 2012, IEEE Transactions on Automatic Control.

[22]  Dennis S. Bernstein,et al.  Geometric homogeneity with applications to finite-time stability , 2005, Math. Control. Signals Syst..

[23]  Alexander Weinmann Uncertain Models and Robust Control , 2002 .

[24]  W. Perruquetti,et al.  Homogeneous differentiator design using implicit Lyapunov Function method , 2014, 2014 European Control Conference (ECC).

[25]  Wilfrid Perruquetti,et al.  Finite-Time Observers: Application to Secure Communication , 2008, IEEE Transactions on Automatic Control.

[26]  E. Moulay,et al.  Finite time stability and stabilization of a class of continuous systems , 2006 .

[27]  Pierre Apkarian,et al.  Advanced global optimization algorithms for parameterized LMIs , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[28]  Rama K. Yedavalli,et al.  Robust Control of Uncertain Dynamic Systems: A Linear State Space Approach , 2013 .

[29]  Maciejowsk Multivariable Feedback Design , 1989 .

[30]  Alexander S. Poznyak,et al.  Practical output feedback stabilisation for a class of continuous-time dynamic systems under sample-data outputs , 2011, Int. J. Control.

[31]  F. Schweppe Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .