Robust output‐control for uncertain linear systems: Homogeneous differentiator‐based observer approach
暂无分享,去创建一个
Andrey Polyakov | Manuel Mera | Hector Rios | Denis Efimov | H. Ríos | D. Efimov | M. Mera | A. Polyakov
[1] A. Bacciotti,et al. Liapunov functions and stability in control theory , 2001 .
[2] Boris T. Polyak,et al. Suppression of bounded exogenous disturbances: Output feedback , 2008 .
[3] Yury Orlov,et al. Advanced H∞ Control , 2014 .
[4] A. Flemming,et al. Soft variable-structure controls: a survey , 2004, Autom..
[5] Alexander S. Poznyak,et al. Observation of linear systems with unknown inputs via high-order sliding-modes , 2007, Int. J. Syst. Sci..
[6] Leonid M. Fridman,et al. Uniform Robust Exact Differentiator , 2011, IEEE Trans. Autom. Control..
[7] S. Spurgeon,et al. Advances in Sliding Mode Control , 2013 .
[8] Alexander S. Poznyak,et al. Attractive Ellipsoids in Robust Control , 2014 .
[9] Vadim I. Utkin,et al. Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.
[10] Andrey Polyakov,et al. Finite-time and fixed-time stabilization: Implicit Lyapunov function approach , 2015, Autom..
[11] D. N. Wormley,et al. Ellipsoidal Set-Theoretic Control Synthesis , 1982 .
[12] Andrey Polyakov,et al. Finite-Time Stabilization Using Implicit Lyapunov Function Technique , 2013, NOLCOS.
[13] V. I. Korobov. A GENERAL APPROACH TO THE SOLUTION OF THE BOUNDED CONTROL SYNTHESIS PROBLEM IN A CONTROLLABILITY PROBLEM , 1980 .
[14] A. Poznyak,et al. Output linear controller for a class of nonlinear systems using the invariant ellipsoid technique , 2009, 2009 American Control Conference.
[15] Andrey Polyakov,et al. Finite-time attractive ellipsoid method: implicit Lyapunov function approach , 2016, Int. J. Control.
[16] C. F. Long,et al. Influence of the manufacturing process on the scheduling problem , 1976 .
[17] Arie Levant,et al. Higher-order sliding modes, differentiation and output-feedback control , 2003 .
[18] Eduardo Sontag,et al. Forward Completeness, Unboundedness Observability, and their Lyapunov Characterizations , 1999 .
[19] Christopher Edwards,et al. Sliding Mode Control and Observation , 2013 .
[20] Peter Dorato,et al. An Overview of Finite-Time Stability , 2006 .
[21] Andrey Polyakov,et al. Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems , 2012, IEEE Transactions on Automatic Control.
[22] Dennis S. Bernstein,et al. Geometric homogeneity with applications to finite-time stability , 2005, Math. Control. Signals Syst..
[23] Alexander Weinmann. Uncertain Models and Robust Control , 2002 .
[24] W. Perruquetti,et al. Homogeneous differentiator design using implicit Lyapunov Function method , 2014, 2014 European Control Conference (ECC).
[25] Wilfrid Perruquetti,et al. Finite-Time Observers: Application to Secure Communication , 2008, IEEE Transactions on Automatic Control.
[26] E. Moulay,et al. Finite time stability and stabilization of a class of continuous systems , 2006 .
[27] Pierre Apkarian,et al. Advanced global optimization algorithms for parameterized LMIs , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).
[28] Rama K. Yedavalli,et al. Robust Control of Uncertain Dynamic Systems: A Linear State Space Approach , 2013 .
[29] Maciejowsk. Multivariable Feedback Design , 1989 .
[30] Alexander S. Poznyak,et al. Practical output feedback stabilisation for a class of continuous-time dynamic systems under sample-data outputs , 2011, Int. J. Control.
[31] F. Schweppe. Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .