Characterization of an extracellular lipase and its chaperone from Ralstonia eutropha H16

[1]  A. Sinskey,et al.  Production of poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations , 2011, Biotechnology and bioengineering.

[2]  A. Marty,et al.  Continuous lipase-catalyzed production of esters from crude high-oleic sunflower oil. , 2011, Bioresource technology.

[3]  Anthony J. Sinskey,et al.  Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) from Plant Oil by Engineered Ralstonia eutropha Strains , 2011, Applied and Environmental Microbiology.

[4]  A. Sinskey,et al.  Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium , 2011, Applied Microbiology and Biotechnology.

[5]  Kenthorai Raman Jegannathan,et al.  Production of biodiesel from palm oil using liquid core lipase encapsulated in κ-carrageenan , 2010 .

[6]  D. Freire,et al.  Effect of Treatment with Compressed Propane on Lipases Hydrolytic Activity , 2010 .

[7]  K. Sudesh,et al.  Evaluation of jatropha oil to produce poly(3-hydroxybutyrate) by Cupriavidus necator H16 , 2010 .

[8]  Q. Zeng,et al.  Elucidation of β-Oxidation Pathways in Ralstonia eutropha H16 by Examination of Global Gene Expression , 2010, Journal of bacteriology.

[9]  M. Hassan,et al.  Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha , 2010, Applied Microbiology and Biotechnology.

[10]  Ying Wang,et al.  Molecular Dynamics Studies on T1 Lipase: Insight into a Double-Flap Mechanism , 2010, J. Chem. Inf. Model..

[11]  Marcio A. Mazutti,et al.  A Review on Microbial Lipases Production , 2010 .

[12]  Prabhat Nath Jha,et al.  Biodiesel production through lipase catalyzed transesterification: An overview , 2010 .

[13]  Dipti Singh,et al.  Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review , 2010 .

[14]  Birgir Norddahl,et al.  A review of the current state of biodiesel production using enzymatic transesterification , 2009, Biotechnology and bioengineering.

[15]  R Miller,et al.  Lipases at interfaces: a review. , 2009, Advances in colloid and interface science.

[16]  Sang-Jin Kim,et al.  Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome , 2009, Applied Microbiology and Biotechnology.

[17]  G. Thomas,et al.  Cold active microbial lipases: some hot issues and recent developments. , 2008, Biotechnology advances.

[18]  K. Chakraborty,et al.  Purification and Biochemical Characterization , 2008 .

[19]  J. Tommassen,et al.  Hexadecane and Tween 80 Stimulate Lipase Production in Burkholderia glumae by Different Mechanisms , 2007, Applied and Environmental Microbiology.

[20]  J. Kaur,et al.  Studies on lipolytic isoenzymes from a thermophilic Bacillus sp.: Production, purification and biochemical characterization , 2007 .

[21]  Subbulakshmi Latha Cherukuvada,et al.  Evidence of a Double-Lid Movement in Pseudomonas aeruginosa Lipase: Insights from Molecular Dynamics Simulations , 2005, PLoS Comput. Biol..

[22]  Y. Chi,et al.  Effects of methanol on the catalytic properties of porcine pancreatic lipase , 2005 .

[23]  Jung-Kee Lee,et al.  High-level heterologous expression and properties of a novel lipase from Ralstonia sp. M1. , 2005, Protein expression and purification.

[24]  T. Oh,et al.  A novel lipase/chaperone pair from Ralstonia sp. M1: analysis of the folding interaction and evidence for gene loss in R. solanacearum , 2004, Molecular Genetics and Genomics.

[25]  R. Gupta,et al.  Bacterial lipases: an overview of production, purification and biochemical properties , 2004, Applied Microbiology and Biotechnology.

[26]  N. Kulkarni,et al.  A novel alkaline, thermostable, protease-free lipase from Pseudomonas sp. , 1999, Biotechnology Letters.

[27]  Y. Tsai,et al.  Effect of triton X-100 on alkaline lipase production by Pseudomonas pseudoalcaligenes F-111 , 1995, Biotechnology Letters.

[28]  Prihardi Kahar,et al.  High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain , 2004 .

[29]  J. Tommassen,et al.  Role of the calcium ion and the disulfide bond in the Burkholderia glumae lipase , 2003 .

[30]  P. Goswami,et al.  Production of a Pseudomonas lipase in n-alkane substrate and its isolation using an improved ammonium sulfate precipitation technique. , 2002, Bioresource technology.

[31]  Karl-Erich Jaeger,et al.  Lipases for biotechnology. , 2002, Current opinion in biotechnology.

[32]  F. Pastor,et al.  Engineering of baker's yeasts, E. coli and Bacillus hosts for the production of Bacillus subtilis Lipase A. , 2002, Biotechnology and bioengineering.

[33]  W. Jang,et al.  Lipase and Its Modulator fromPseudomonas sp. Strain KFCC 10818: Proline-to-Glutamine Substitution at Position 112 Induces Formation of Enzymatically Active Lipase in the Absence of the Modulator , 2001, Journal of bacteriology.

[34]  R. K. Saxena,et al.  A novel alkaline lipase from Burkholderia cepacia for detergent formulation , 2001 .

[35]  B. Dijkstra,et al.  The Crystal Structure of Bacillus subtilis Lipase : A Minimal α/β Hydrolase Fold Enzyme , 2001 .

[36]  B. Dijkstra,et al.  The crystal structure of Bacillus subtilis lipase: a minimal alpha/beta hydrolase fold enzyme. , 2001, Journal of molecular biology.

[37]  L. Chong Nota Bene: A Last Hurrah and New Directions , 2001, Science.

[38]  A. Sinskey,et al.  New Insight into the Role of the PhaP Phasin of Ralstonia eutropha in Promoting Synthesis of Polyhydroxybutyrate , 2001, Journal of bacteriology.

[39]  F. Götz,et al.  Staphylococcal lipases: biochemical and molecular characterization. , 2000, Biochimie.

[40]  K. Jaeger,et al.  Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. , 2000, Biochimie.

[41]  R. Verger,et al.  CRYSTAL STRUCTURE OF HUMAN GASTRIC LIPASE , 2000 .

[42]  K. Hellingwerf,et al.  Effects of carbon sources on extracellular lipase production and lipA transcription in Acinetobacter calcoaceticus , 2000, Journal of Industrial Microbiology and Biotechnology.

[43]  K. Jaeger,et al.  Bacterial lipolytic enzymes: classification and properties. , 1999, The Biochemical journal.

[44]  R. Verger,et al.  Crystal Structure of Human Gastric Lipase and Model of Lysosomal Acid Lipase, Two Lipolytic Enzymes of Medical Interest* , 1999, The Journal of Biological Chemistry.

[45]  C. R. Soccol,et al.  The realm of microbial lipases in biotechnology , 1999, Biotechnology and applied biochemistry.

[46]  R C Cox,et al.  Identification of a calcium binding site in Staphylococcus hyicus lipase: generation of calcium-independent variants. , 1999, Biochemistry.

[47]  B. Dijkstra,et al.  Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. , 1999, Annual review of microbiology.

[48]  M. Reetz,et al.  Microbial lipases form versatile tools for biotechnology. , 1998, Trends in biotechnology.

[49]  S. Brocca,et al.  Physiological control on the expression and secretion of Candida rugosa lipase. , 1998, Chemistry and physics of lipids.

[50]  K. Houmiel,et al.  Multiple β-Ketothiolases Mediate Poly(β-Hydroxyalkanoate) Copolymer Synthesis in Ralstonia eutropha , 1998 .

[51]  K. Houmiel,et al.  Multiple beta-ketothiolases mediate poly(beta-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. , 1998, Journal of bacteriology.

[52]  J. Schrag,et al.  Lipases and alpha/beta hydrolase fold. , 1997, Methods in enzymology.

[53]  K. Hellingwerf,et al.  Physiological factors affecting production of extracellular lipase (LipA) in Acinetobacter calcoaceticus BD413: fatty acid repression of lipA expression and degradation of LipA , 1996, Journal of bacteriology.

[54]  J. Rhee,et al.  Effects of Growth Rate on the Production of Pseudomonas fluorescens Lipase during the Fed‐Batch Cultivation of Escherichia coli , 1996, Biotechnology progress.

[55]  C Cambillau,et al.  Horse pancreatic lipase. The crystal structure refined at 2.3 A resolution. , 1994, Journal of molecular biology.

[56]  L. Johnson,et al.  The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate , 1993, FEBS letters.

[57]  C. Colson,et al.  Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme. , 1993, European journal of biochemistry.

[58]  J. Tommassen,et al.  Role of the lipB gene product in the folding of the secreted lipase of Pseudomonas glumae , 1993, Molecular microbiology.

[59]  E. J. Gilbert,et al.  Pseudomonas lipases: biochemical properties and molecular cloning. , 1993, Enzyme and microbial technology.

[60]  J. W. Bos,et al.  An accessory gene, lipB, required for the production of active Pseudomonas glumae lipase , 1993, Molecular microbiology.

[61]  D. McConnell,et al.  Activation of a bacterial lipase by its chaperone. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[62]  M. Hynes,et al.  Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. , 1993, Gene.

[63]  P. Skagerlind,et al.  Surfactant interference on lipase catalysed reactions in microemulsions. , 2007, Journal of chemical technology and biotechnology.

[64]  G G Dodson,et al.  The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 A resolution. , 1992, Journal of molecular biology.

[65]  A. R. Macrae,et al.  Present and future applications of lipases , 1985 .

[66]  A. Pühler,et al.  A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria , 1983, Bio/Technology.

[67]  J. Drenth,et al.  Methylation of histidine-48 in pancreatic phospholipase A2. Role of histidine and calcium ion in the catalytic mechanism. , 1980, Biochemistry.