Absolute testing of the reference surface of a Fizeau interferometer through even/odd decompositions.

Absolute testing of spherical surfaces is a technological necessity because of increased accuracy requirements. In a Fizeau setup, the main part of the interferometer deviations thereby comes from the reference surface. We demonstrate the validity of an absolute testing procedure for the reference surface that has been proposed earlier. The procedure relies on the decomposition of the surface deviations into odd and even parts and could be used in partially coherent illumination. The odd deviations are obtained from a basic and a 180 degree-rotated position of an auxiliary sphere, and the even deviations can be measured with the help of a cat's eye position in double pass using an opaque half screen in the interferometer aperture.

[1]  Michael F. Küchel,et al.  A new approach to solve the three flat problem , 2001 .

[2]  Andreas Vogel,et al.  Establishing a flatness standard. , 1994, Applied optics.

[3]  G Schulz Absolute flatness testing by an extended rotation method using two angles of rotation. , 1993, Applied optics.

[4]  Robert E. Parks Removal Of Test Optics Errors , 1978, Optics & Photonics.

[5]  G D Dew,et al.  The measurement of optical flatness. , 1966, Journal of scientific instruments.

[6]  J. Schwider,et al.  IV Advanced Evaluation Techniques in Interferometry , 1990 .

[7]  R. Riekher,et al.  Ein Interferenzverfahren zur Absolutprüfung von Planflächennormalen. I , 1966 .

[8]  U. Griesmann Three-flat test solutions based on simple mirror symmetry. , 2006, Applied optics.

[9]  Johannes A. Soons,et al.  A simple ball averager for reference sphere calibrations , 2005, SPIE Optics + Photonics.

[10]  Giuseppe Molesini,et al.  Three-flat test with plates in horizontal posture. , 2008, Applied optics.

[11]  Robert J. Hocken,et al.  Self-Calibration: Reversal, Redundancy, Error Separation, and ‘Absolute Testing’ , 1996 .

[12]  Bernard S. Fritz,et al.  Absolute Calibration Of An Optical Flat , 1984 .

[13]  K. Freischlad Absolute interferometric testing based on reconstruction of rotational shear. , 2001, Applied optics.

[14]  J. Schwider,et al.  IV Interferometric Testing of Smooth Surfaces , 1976 .

[15]  G. Schulz,et al.  Ein Interferenzverfahren zur Absoluten Ebenheitsprüfung Längs Beliebiger Zentralschnitte , 1967 .

[16]  Absolute sphericity measurement. , 1989, Applied optics.

[17]  J. Grzanna Absolute testing of optical flats at points on a square grid: error propagation. , 1994, Applied optics.

[18]  H. H. Hopkins Applied optics at reading , 1970 .

[19]  J Schwider,et al.  Establishing an optical flatness standard. , 1971, Applied optics.

[20]  R E Parks,et al.  Pixel-based absolute topography test for three flats. , 1998, Applied optics.

[21]  Neil Gardner,et al.  Self-calibration for microrefractive lens measurements , 2006 .

[22]  J C Wyant,et al.  Testing spherical surfaces: a fast, quasi-absolute technique. , 1992, Applied optics.

[23]  K.-E. Elßner,et al.  Interferentielle Absolutprüfung Von Sphärizitätsnormalen , 1980 .

[24]  J C Wyant,et al.  Absolute testing of flats by using even and odd functions. , 1993, Applied optics.

[25]  C. Evans,et al.  Test optics error removal. , 1996, Applied optics.

[26]  G. Schulz,et al.  Interferentielle Absolutprüfung Zweier Flächen , 1973 .

[27]  D. J. Brangaccio,et al.  Digital wavefront measuring interferometer for testing optical surfaces and lenses. , 1974, Applied optics.