Carbon nanotubes for next generation very large scale integration interconnects

We investigated the application of one-dimensional fluid model in modeling of electron transport in carbon nanotubes and equivalent circuits for interconnections and compared the performances with the currently used copper interconnects in very-large-scale integration (VLSI) circuits. In this model, electron transport in carbon nanotubes is regarded as quasi one-dimensional fluid with strong electron-electron interaction. Verilog-AMS in Cadence/Spectre was used in simulation studies. Carbon nanotubes of the types single-walled, multiwalled and bundles were considered for ballistic transport region, local and global interconnections. Study of the S-parameters showed higher transmission efficiency and lower reflection losses. Theoretical modeling and computer-aided simulation studies through a complimentary CNT-FET inverter pair, interconnected through a wire, exhibited reduced delays and power dissipations for carbon nanotube interconnects in comparison to copper interconnects in 22 nm and lower technology nodes. The performance of CNT interconnects was shown to be further improved with increase in number of metallic carbon nanotubes. Our study suggests the replacement of copper interconnect with the multiwalled and bundles of single-walled carbon nanotubes for the sub-nanometer CMOS technologies.

[1]  S. Ramo,et al.  Fields and Waves in Communication Electronics , 1966 .

[2]  George Keith Batchelor,et al.  An Introduction to Fluid Dynamics. , 1969 .

[3]  D. Rosenthal,et al.  Introduction to properties of materials , 1971 .

[4]  A. Fetter,et al.  Electrodynamics of a layered electron gas. I. Single layer , 1973 .

[5]  A. Fetter,et al.  Electrodynamics of a layered electron gas. II. Periodic array , 1974 .

[6]  A. J. Compton The Electromagnetic Field , 1986 .

[7]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[8]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[9]  Leon Balents,et al.  COULOMB INTERACTIONS AND MESOSCOPIC EFFECTS IN CARBON NANOTUBES , 1997 .

[10]  Transport in a One-Dimensional Luttinger Liquid , 1996, cond-mat/9610037.

[11]  T. Ebbesen Physical Properties of Carbon Nanotubes , 1997 .

[12]  Alvin Leng Sun Loke,et al.  Microstructure and reliability of copper interconnects , 1998 .

[13]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[14]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[15]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[16]  Leon Balents,et al.  Luttinger-liquid behaviour in carbon nanotubes , 1998, Nature.

[17]  A. V. Gusakov,et al.  Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation , 1999 .

[18]  D. Miller,et al.  Optical interconnects to silicon , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[20]  S. Wong,et al.  Physical modeling of spiral inductors on silicon , 2000 .

[21]  M. Dresselhaus,et al.  Carbon nanotubes : synthesis, structure, properties, and applications , 2001 .

[22]  Akhlesh Lakhtakia,et al.  Scattering of Electromagnetic Waves by a Semi-Infinite Carbon Nanotube , 2001 .

[23]  Christian Schönenberger,et al.  Physical Properties of Multi-wall Nanotubes , 2001 .

[24]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[25]  P. Burke Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes , 2002 .

[26]  H.-S.P. Wong,et al.  Field effect transistors-from silicon MOSFETs to carbon nanotube FETs , 2002, 2002 23rd International Conference on Microelectronics. Proceedings (Cat. No.02TH8595).

[27]  S. Wind,et al.  Carbon nanotube electronics , 2003, Digest. International Electron Devices Meeting,.

[28]  Qian Wang,et al.  Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators , 2002, Nano Letters.

[29]  P. Burke,et al.  An RF circuit model for carbon nanotubes , 2002, Proceedings of the 2nd IEEE Conference on Nanotechnology.

[30]  P. Kapur,et al.  Comparisons between electrical and optical interconnects for on-chip signaling , 2002, Proceedings of the IEEE 2002 International Interconnect Technology Conference (Cat. No.02EX519).

[31]  P. McEuen,et al.  Single-walled carbon nanotube electronics , 2002 .

[32]  H. Kataura,et al.  Direct observation of Tomonaga–Luttinger-liquid state in carbon nanotubes at low temperatures , 2003, Nature.

[33]  R. A. McGill,et al.  Nerve agent detection using networks of single-walled carbon nanotubes , 2003 .

[34]  M. Dresselhaus,et al.  Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly , 2003, Science.

[35]  Qian Wang,et al.  Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. , 2003, Nano letters.

[36]  Qian Wang,et al.  Advancements in complementary carbon nanotube field-effect transistors , 2003, IEEE International Electron Devices Meeting 2003.

[37]  K. Roy,et al.  Modeling and analysis of carbon nanotube interconnects and their effectiveness for high speed VLSI design , 2004, 4th IEEE Conference on Nanotechnology, 2004..

[38]  G. Duesberg,et al.  Carbon nanotubes for interconnect applications , 2002, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[39]  S. Datta Quantum Transport: Atom to Transistor , 2004 .

[40]  Kaushik Roy,et al.  A circuit-compatible model of ballistic carbon nanotube field-effect transistors , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[41]  P. McEuen,et al.  Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes , 2003, cond-mat/0309641.

[42]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[43]  J.A. Davis,et al.  Compact physical models for multilevel interconnect crosstalk in gigascale integration (GSI) , 2004, IEEE Transactions on Electron Devices.

[44]  Vikram Joshi,et al.  Nanoelectronic Carbon Dioxide Sensors , 2004 .

[45]  Bing-Lin Gu,et al.  Ab initio study of transport properties of multiwalled carbon nanotubes , 2005 .

[46]  A. Kawabata,et al.  Low-resistance multi-walled carbon nanotube vias with parallel channel conduction of inner shells [IC interconnect applications] , 2005, Proceedings of the IEEE 2005 International Interconnect Technology Conference, 2005..

[47]  Franz Kreupl,et al.  Nanoelectronics Based on Carbon Nanotubes: Technological Challenges and Recent Developments , 2005 .

[48]  Hui Chen,et al.  Predictions of CMOS compatible on-chip optical interconnect , 2005, SLIP '05.

[49]  S. Datta,et al.  Transport effects on signal propagation in quantum wires , 2005, IEEE Transactions on Electron Devices.

[50]  Alan Gelperin,et al.  DNA-decorated carbon nanotubes for chemical sensing , 2005, Nano letters.

[51]  Kaustav Banerjee,et al.  Performance analysis of carbon nanotube interconnects for VLSI applications , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[52]  H J Li,et al.  Multichannel ballistic transport in multiwall carbon nanotubes. , 2005, Physical review letters.

[53]  E. S. Snow,et al.  Chemical Detection with a Single-Walled Carbon Nanotube Capacitor , 2005, Science.

[54]  J. Meindl,et al.  Compact physical models for multiwall carbon-nanotube interconnects , 2006, IEEE Electron Device Letters.

[55]  Arthur Nieuwoudt,et al.  Modeling and design challenges and solutions for carbon nanotube-based interconnect in future high performance integrated circuits , 2006, JETC.

[56]  Y. Massoud,et al.  Understanding the Impact of Inductance in Carbon Nanotube Bundles for VLSI Interconnect Using Scalable Modeling Techniques , 2006, IEEE Transactions on Nanotechnology.

[57]  Jingqi Li,et al.  Influences of ac electric field on the spatial distribution of carbon nanotubes formed between electrodes , 2006 .

[58]  G. Miano,et al.  An Integral Formulation for the Electrodynamics of Metallic Carbon Nanotubes Based on a Fluid Model , 2006, IEEE Transactions on Antennas and Propagation.

[59]  Y. Massoud,et al.  Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques , 2006, IEEE Transactions on Electron Devices.

[61]  Carbon nanotube array vias for interconnect applications , 2007, 0708.1298.

[62]  J. Meindl,et al.  Design and Performance Modeling for Single-Walled Carbon Nanotubes as Local, Semiglobal, and Global Interconnects in Gigascale Integrated Systems , 2007, IEEE Transactions on Electron Devices.

[63]  John J. Plombon,et al.  High-frequency electrical properties of individual and bundled carbon nanotubes , 2007 .

[64]  Anantha Chandrakasan,et al.  A Low Power Carbon Nanotube Chemical Sensor System , 2008, 2007 IEEE Custom Integrated Circuits Conference.

[65]  H. Wong,et al.  Fabrication and Characterization of Carbon Nanotube Interconnects , 2007, 2007 IEEE International Electron Devices Meeting.

[66]  Frédéric Gaffiot,et al.  CNTFET Modeling and Reconfigurable Logic-Circuit Design , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[67]  J. Miao,et al.  Aligned carbon nanotubes for through-wafer interconnects , 2007 .

[68]  Prachi Patel-Predd,et al.  Update: Carbon-Nanotube Wiring Gets Real , 2008 .

[69]  Y. Massoud,et al.  On the Optimal Design, Performance, and Reliability of Future Carbon Nanotube-Based Interconnect Solutions , 2008, IEEE Transactions on Electron Devices.

[70]  K. Banerjee,et al.  Circuit Modeling and Performance Analysis of Multi-Walled Carbon Nanotube Interconnects , 2008, IEEE Transactions on Electron Devices.

[71]  Shinobu Fujita,et al.  A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors. , 2008, Nano letters.

[72]  A. Maffucci,et al.  A transmission line model for metallic carbon nanotube interconnects , 2008, Int. J. Circuit Theory Appl..

[73]  Yao Xu,et al.  Emerging carbon nanotube electronic circuits, modeling and performance , 2008, 2008 51st Midwest Symposium on Circuits and Systems.

[74]  K. Banerjee,et al.  High-Frequency Analysis of Carbon Nanotube Interconnects and Implications for On-Chip Inductor Design , 2009, IEEE Transactions on Electron Devices.

[75]  Signal integrity analysis of carbon nanotube on-chip interconnects , 2009, 2009 IEEE Workshop on Signal Propagation on Interconnects.

[76]  P. Kapur,et al.  Compact Performance Models and Comparisons for Gigascale On-Chip Global Interconnect Technologies , 2009, IEEE Transactions on Electron Devices.

[77]  Tughrul Arslan,et al.  Carbon nanotube interconnects for low-power high-speed applications , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[78]  T. Zimmer,et al.  Implementation of Tunneling Phenomena in a CNTFET Compact Model , 2009, IEEE Transactions on Electron Devices.

[79]  Ashok Srivastava,et al.  A model of multi-walled carbon nanotube interconnects , 2009, 2009 52nd IEEE International Midwest Symposium on Circuits and Systems.

[80]  Antonio Maffucci,et al.  Carbon nanotube bundles as nanoscale chip to package interconnects , 2009, 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO).

[81]  J. Meindl,et al.  Compact Physics-Based Circuit Models for Graphene Nanoribbon Interconnects , 2009, IEEE Transactions on Electron Devices.

[82]  A. Srivastava,et al.  Dynamic Response of Carbon Nanotube Field Effect Transistor Circuits , 2009 .

[83]  Reza Sarvari,et al.  Accurate analysis of carbon nanotube interconnects using transmission line model , 2009 .

[84]  Mircea R. Stan,et al.  Graphene devices, interconnect and circuits — challenges and opportunities , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[85]  Ashok Srivastava,et al.  Current transport modeling of carbon nanotube field effect transistors , 2009 .

[86]  C. Xu,et al.  Carbon Nanomaterials for Next-Generation Interconnects and Passives: Physics, Status, and Prospects , 2009, IEEE Transactions on Electron Devices.

[87]  A. Maffucci,et al.  A New Circuit Model for Carbon Nanotube Interconnects With Diameter-Dependent Parameters , 2009, IEEE Transactions on Nanotechnology.

[88]  Measurement of Subnanosecond Delay Through Multiwall Carbon-Nanotube Local Interconnects in a CMOS Integrated Circuit , 2009, IEEE Transactions on Electron Devices.

[89]  K. Banerjee,et al.  On the Applicability of Single-Walled Carbon Nanotubes as VLSI Interconnects , 2009, IEEE Transactions on Nanotechnology.

[90]  A. Maffucci Carbon nanotubes in nanopackaging applications , 2009, IEEE Nanotechnology Magazine.

[91]  Henri Happy,et al.  Gigahertz characterization of a single carbon nanotube , 2010 .

[92]  Scott Hauck,et al.  The Future of Integrated Circuits: A Survey of Nanoelectronics , 2010, Proceedings of the IEEE.

[93]  M. S. Sarto,et al.  Single-Conductor Transmission-Line Model of Multiwall Carbon Nanotubes , 2010, IEEE Transactions on Nanotechnology.

[94]  Yao Xu,et al.  A model for carbon nanotube interconnects , 2010, Int. J. Circuit Theory Appl..

[95]  Carbon Nanotube Synthesis , 2011 .