An Agent-Based Approach to Immune Modelling: Priming Individual Response

This study focuses on examining why the range of experience with respect to HIV infection is so diverse, especially in regard to the latency period. An agent-based approach in modelling the infection is used to extract high-level behaviour which cannot be obtained analytically from the set of interaction rules at the cellular level. A prototype model encompasses local variation in baseline properties, contributing to the individual disease experience, and is included in a network which mimics the chain of lymph nodes. The model also accounts for stochastic events such as viral mutations. The size and complexity of the model require major computational effort and parallelisation methods are used. Keywords—HIV, Immune modelling, Agent-based system, individual response.

[1]  Ras B. Pandey,et al.  A computer simulation study of cell population in a fuzzy interaction model for mutating HIV , 1998 .

[2]  Barbara Hayes-Roth,et al.  Distributing Intelligence within an Individual , 1988, Distributed Artificial Intelligence.

[3]  J. Altman,et al.  Persistence of memory CD8 T cells in MHC class I-deficient mice. , 1999, Science.

[4]  Edmund H. Durfee,et al.  Coordination of distributed problem solvers , 1988 .

[5]  F. Buseyne,et al.  The flexibility of the TCR allows recognition of a large set of naturally occurring epitope variants by HIV-specific cytotoxic T lymphocytes. , 2001, International immunology.

[6]  Robert D. Groot Consumers don't play dice, influence of social networks and advertisements , 2006 .

[7]  Hamid Ez-Zahraouy,et al.  Dynamics of HIV infection on 2D cellular automata , 2003 .

[8]  Steven M. Manson,et al.  Agent-based modeling and genetic programming for modeling land change in the Southern Yucatán Peninsular Region of Mexico , 2005 .

[9]  P. Easterbrook,et al.  Cross-staining of cytotoxic T lymphocyte populations with peptide-MHC class I multimers of natural HIV-1 variant antigens. , 2001, AIDS.

[10]  Jarkko Kari,et al.  Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..

[11]  Randall Steeb,et al.  Strategies of Cooperation in Distributed Problem Solving , 1983, IJCAI.

[12]  Heather J. Ruskin,et al.  A monte carlo approach to population dynamics of cells in a HIV immune response model , 2000 .

[13]  L. Schalchli Le système immunitaire , 1997 .

[14]  Rita Maria Zorzenon dos Santos,et al.  On cell resistance and immune response time lag in a model for the HIV infection , 2004 .

[15]  Edmund H. Durfee,et al.  Scaling Up Agent Coordination Strategies , 2001, Computer.

[16]  Henri Atlan,et al.  HIV time hierarchy: winning the war while, loosing all the battles , 2000, nlin/0006023.

[17]  Agostino Poggi,et al.  An Object-Oriented Framework to Realize Agent Systems , 2000, WOA.

[18]  Anthony Skjellum,et al.  Using MPI: portable parallel programming with the message-passing interface, 2nd Edition , 1999, Scientific and engineering computation series.

[19]  Heather J. Ruskin,et al.  HIV Modelling - Parallel Implementation Strategies , 2008 .

[20]  Ronald N. Germain,et al.  The Art of the Probable: System Control in the Adaptive Immune System , 2001, Science.

[21]  Nelson Minar,et al.  The Swarm Simulation System: A Toolkit for Building Multi-Agent Simulations , 1996 .

[22]  Luc Montagnier,et al.  T-lymphocyte T4 molecule behaves as the receptor for human retrovirus  LAV , 1984, Nature.

[23]  Nicholas R. Jennings,et al.  Intelligent agents: theory and practice , 1995, The Knowledge Engineering Review.

[24]  Michael Mascagni,et al.  Testing parallel random number generators , 2003, Parallel Comput..

[25]  Anthony Skjellum,et al.  Using MPI - portable parallel programming with the message-parsing interface , 1994 .

[26]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[27]  Venansius Baryamureeba,et al.  PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 8 , 2005 .

[28]  John Burns,et al.  Emergent networks in immune system shape space , 2005 .

[29]  Richard Lazarus,et al.  An infrastructure for adaptive control of multi-agent systems , 2003, IEMC '03 Proceedings. Managing Technologically Driven Organizations: The Human Side of Innovation and Change (IEEE Cat. No.03CH37502).

[30]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[31]  Heather J. Ruskin,et al.  Optimisation and parallelisation strategies for Monte Carlo simulation of HIV infection , 2007, Comput. Biol. Medicine.

[32]  Mike Holcombe,et al.  Formal agent-based modelling of intracellular chemical interactions. , 2006, Bio Systems.

[33]  Robert B. Ross,et al.  Using MPI-2: Advanced Features of the Message Passing Interface , 2003, CLUSTER.