Imaging Drug Distribution and Effects at the Single Cell Level In Vivo

[1]  Michael S Roberts,et al.  Functional characterization of hepatic transporters using intravital microscopy. , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[2]  R. Weissleder,et al.  BODIPY-tetrazine derivatives as superbright bioorthogonal turn-on probes. , 2013, Angewandte Chemie.

[3]  M. Delgado-Rodríguez,et al.  Simultaneous phenotypic and genetic characterization of single circulating tumor cells from colon cancer patients. , 2013, Histology and histopathology.

[4]  Kazuhiro Aoki,et al.  Fluorescence resonance energy transfer imaging of cell signaling from in vitro to in vivo: Basis of biosensor construction, live imaging, and image processing , 2013, Development, growth & differentiation.

[5]  R. Weissleder,et al.  Single Cell Analysis of Drug Distribution by Intravital Imaging , 2013, PloS one.

[6]  Jung Ho Yu,et al.  High-resolution three-photon biomedical imaging using doped ZnS nanocrystals. , 2013, Nature materials.

[7]  Greg M. Thurber,et al.  Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo , 2013, Nature Communications.

[8]  Andrew M. K. Brown,et al.  Variable Clonal Repopulation Dynamics Influence Chemotherapy Response in Colorectal Cancer , 2013, Science.

[9]  Ou Chen,et al.  Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. , 2013, Nature materials.

[10]  R. Jain,et al.  Spatial charge configuration regulates nanoparticle transport and binding behavior in vivo. , 2013, Angewandte Chemie.

[11]  Olof Arwinge,et al.  A Regulatory Perspective , 2013 .

[12]  D. Malide,et al.  Dynamic clonal analysis of murine hematopoietic stem and progenitor cells marked by 5 fluorescent proteins using confocal and multiphoton microscopy. , 2012, Blood.

[13]  J. McCaffery,et al.  Mouse lines with photo‐activatable mitochondria to study mitochondrial dynamics , 2012, Genesis.

[14]  Birgit Schoeberl,et al.  An expanding role for cell biologists in drug discovery and pharmacology , 2012, Molecular biology of the cell.

[15]  Ralph Weissleder,et al.  Improved intravital microscopy via synchronization of respiration and holder stabilization , 2012, Journal of biomedical optics.

[16]  R. Weissleder,et al.  Real-time in vivo imaging of the beating mouse heart at microscopic resolution , 2012, Nature Communications.

[17]  Michael Leung,et al.  A Novel Solid Lipid Nanoparticle Formulation for Active Targeting to Tumor αvβ3 Integrin Receptors Reveals Cyclic RGD as A Double‐Edged Sword , 2012, Advanced healthcare materials.

[18]  José Manuel Benítez,et al.  Segmentation of cervical cell nuclei in high-resolution microscopic images: A new algorithm and a web-based software framework , 2012, Comput. Methods Programs Biomed..

[19]  Zijuan Zhang,et al.  Leveraging kinase inhibitors to develop small molecule tools for imaging kinases by fluorescence microscopy. , 2012, Molecular bioSystems.

[20]  R. Weissleder,et al.  Bioorthogonal imaging of aurora kinase A in live cells. , 2012, Angewandte Chemie.

[21]  R. Weissleder,et al.  In vivo imaging of drug-induced mitochondrial outer membrane permeabilization at single-cell resolution. , 2012, Cancer research.

[22]  Michael Thomaschewski,et al.  RGB marking with lentiviral vectors for multicolor clonal cell tracking , 2012, Nature Protocols.

[23]  G. Drummen,et al.  Advanced Fluorescence Microscopy Techniques—FRAP, FLIP, FLAP, FRET and FLIM , 2012, Molecules.

[24]  R. Weissleder,et al.  Imaging therapeutic PARP inhibition in vivo through bioorthogonally developed companion imaging agents. , 2012, Neoplasia.

[25]  E. Callaway Structural biologists share their toys , 2012, Nature.

[26]  Kazuhiro Aoki,et al.  Development of an optimized backbone of FRET biosensors for kinases and GTPases , 2011, Molecular biology of the cell.

[27]  Yongxin Zhao,et al.  An Expanded Palette of Genetically Encoded Ca2+ Indicators , 2011, Science.

[28]  R. Weissleder,et al.  Bioorthogonal probes for polo-like kinase 1 imaging and quantification. , 2011, Angewandte Chemie.

[29]  Ralph Weissleder,et al.  A Systems Approach for Tumor Pharmacokinetics , 2011, PloS one.

[30]  Ralph Weissleder,et al.  Analysis of mitosis and antimitotic drug responses in tumors by in vivo microscopy and single-cell pharmacodynamics. , 2011, Cancer research.

[31]  R. Weissleder,et al.  Biomedical applications of tetrazine cycloadditions. , 2011, Accounts of chemical research.

[32]  Michael Thomaschewski,et al.  RGB marking facilitates multicolor clonal cell tracking , 2011, Nature Medicine.

[33]  Ralph Weissleder,et al.  In vivo imaging in cancer. , 2010, Cold Spring Harbor perspectives in biology.

[34]  R. Weissleder,et al.  Bioorthogonal turn-on probes for imaging small molecules inside living cells. , 2010, Angewandte Chemie.

[35]  Gaudenz Danuser,et al.  Kinetochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerases , 2010, The Journal of cell biology.

[36]  Ralph Weissleder,et al.  Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition. , 2009, Angewandte Chemie.

[37]  E. Myers,et al.  A 3D Digital Atlas of C. elegans and Its Application To Single-Cell Analyses , 2009, Nature Methods.

[38]  Bojana Gligorijevic,et al.  Dendra2 Photoswitching through the Mammary Imaging Window , 2009, Journal of visualized experiments : JoVE.

[39]  P. Sorger,et al.  Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis , 2009, Nature.

[40]  Re Gonzalez,et al.  R.C. Eddins, Digital image processing using MATLAB, vol. Gatesmark Publishing Knoxville , 2009 .

[41]  Anne E Carpenter Extracting rich information from images. , 2009, Methods in molecular biology.

[42]  R. Weissleder,et al.  Tetrazine-based cycloadditions: application to pretargeted live cell imaging. , 2008, Bioconjugate chemistry.

[43]  Joseph M. Fox,et al.  Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. , 2008, Journal of the American Chemical Society.

[44]  K. Jaqaman,et al.  Robust single particle tracking in live cell time-lapse sequences , 2008, Nature Methods.

[45]  D. Lauffenburger,et al.  Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. , 2008, Molecular cell.

[46]  Ronald T Raines,et al.  Bright ideas for chemical biology. , 2008, ACS chemical biology.

[47]  Nilanjan Ray,et al.  Edge Sensitive Variational Image Thresholding , 2007, 2007 IEEE International Conference on Image Processing.

[48]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[49]  Shuji Watanabe [Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin]. , 2007, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[50]  Badrinath Roysam,et al.  A multi‐model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images , 2007, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[51]  A. Trubuil,et al.  Visualization and quantification of vesicle trafficking on a three‐dimensional cytoskeleton network in living cells , 2007, Journal of microscopy.

[52]  G Danuser,et al.  Periodic patterns of actin turnover in lamellipodia and lamellae of migrating epithelial cells analyzed by quantitative Fluorescent Speckle Microscopy. , 2005, Biophysical journal.

[53]  Jennifer A. Prescher,et al.  Chemistry in living systems , 2005, Nature chemical biology.

[54]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[55]  Takeo Tanaami,et al.  High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks. , 2002, Applied optics.

[56]  In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy , 2001, Nature Medicine.

[57]  Xiaodong Wang,et al.  Smac, a Mitochondrial Protein that Promotes Cytochrome c–Dependent Caspase Activation by Eliminating IAP Inhibition , 2000, Cell.

[58]  K. Higgins,et al.  Population Pharmacokinetics , 1999 .

[59]  J. Skene,et al.  Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43 , 1989, The Journal of cell biology.

[60]  G. Heppner,et al.  Mutagenic activity of tumor-associated macrophages in Salmonella typhimurium strains TA98 and TA 100. , 1984, Cancer research.