The role of nutrients in regulation and promotion of harmful algal blooms in upwelling systems

The Core Research Project on HABs in upwelling systems, as a component project of the international scientific programme on the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB), promotes a comparative approach within and across systems to understand and predict the ecology, frequency and occurrence of HABs in eastern boundary current upwelling systems. Unlike other systems, upwelling circulation tends to override nutrient limitation caused by stratification, but is less affected by anthropogenic impacts due to the magnitude of the upwelling nutrient signal. At the same time, upwelling systems are unique in that they undergo seasonal succession as well as short-term spatial and temporal oscillations driven by the time-scale of upwelling wind events. An understanding of nutrient dynamics in upwelling systems is thus critical to any attempt to understand or predict HAB events in these environments. We review the state of knowledge regarding nutrient ecophysiology of a subset of HAB organisms identified in upwelling systems. The upwelling HABs exhibit a number of adaptations previously identified in HAB organisms, such as mixotrophy, osmotrophy and vertical migration. We suggest that, unlike most other HABs, these organisms do not necessarily follow a low nutrient-affinity strategy, and do not fit well with classic allometric scaling relationships. Despite these anomalies, progress has been made in predicting HAB events in upwelling systems, by linking HAB events to the unique environmental conditions associated with these systems. We conclude that this subset of HAB organisms is still poorly described in terms of nutrient ecophysiology, and will benefit from a comparative approach across systems, particularly because the subset of upwelling HABs does not necessarily fit the generic patterns identified for HABs generally.

[1]  Y. Collos Time-lag algal growth dynamics: biological constraints on primary production in aquatic environments , 1986 .

[2]  Patrick Gentien,et al.  The global, complex phenomena of harmful algal blooms , 2005 .

[3]  D. Stoecker,et al.  “Windows of opportunity” for dinoflagellate blooms: Reduced microzooplankton net growth coupled to eutrophication , 2008 .

[4]  T. Probyn Nitrogen uptake by size-fractionated phytoplankton populations in the southern Benguela upwelling system , 1985 .

[5]  B. Sweeney PEDINOMONAS NOCTILUCAE (PRASINOPHYCEAE), THE FLAGELLATE SYMBIOTIC IN NOCTILUCA (DINOPHYCEAE) IN SOUTHEAST ASIA 1 , 1976 .

[6]  B. Reguera,et al.  Harmful Algal Blooms in Stratified Environments , 2005 .

[7]  F. Healey Slope of the Monod equation as an indicator of advantage in nutrient competition , 1980, Microbial Ecology.

[8]  Xabier Irigoien,et al.  Phytoplankton blooms: a ‘loophole’ in microzooplankton grazing impact? , 2005 .

[9]  Vincent Locicero Proceedings of the First International Conference on Toxic Dinoflagellate Blooms , 1975 .

[10]  F. G. Figueiras,et al.  Renewal time and the impact of harmful algal blooms on the extensive mussel raft culture of the Iberian coastal upwelling system (SW Europe) , 2008 .

[11]  Jong Gyu Park,et al.  Diurnal vertical migration of a harmful dinoflagellate, Cochlodinium polykrikoides (Dinophyceae), during a red tide in coastal waters of Namhae Island, Korea , 2001 .

[12]  John A. Harrison,et al.  Escalating Worldwide use of Urea – A Global Change Contributing to Coastal Eutrophication , 2006 .

[13]  F. Schwing,et al.  THE STATE OF THE CALIFORNIA CURRENT IN 1994-1 995: A PERIOD OF TRANSITION , 1995 .

[14]  E. Berdalet,et al.  Phytoplankton in a turbulent world , 1997 .

[15]  Andrew M. Fischer,et al.  Coastal Ocean Physics and Red Tides: An Example from Monterey Bay, California , 2005 .

[16]  M. Brzezinski,et al.  Empirical models of toxigenic Pseudo-nitzschia blooms: Potential use as a remote detection tool in the Santa Barbara Channel , 2009 .

[17]  Kevin J. Flynn,et al.  Growth dynamics and toxicity of Alexandrium fundyense (Dinophyceae): the effect of changing N:P supply ratios on internal toxin and nutrient levels , 2000 .

[18]  Ulrich Sommer,et al.  The paradox of the plankton: Fluctuations of phosphorus availability maintain diversity of phytoplankton in flow‐through cultures1 , 1984 .

[19]  Patricia M. Glibert,et al.  GEOHAB. Global Ecology and Oceanography of Harmful Algal Blooms, Implementation Plan. , 2003 .

[20]  M. T. Maldonado,et al.  The effect of Fe and Cu on growth and domoic acid production by Pseudo-nitzschia multiseries and Pseudo‐nitzschia australis , 2002 .

[21]  R. Kudela,et al.  Nitrogenous preference of toxigenic Pseudo-nitzschia australis (Bacillariophyceae) from field and laboratory experiments , 2007 .

[22]  V. Trainer Harmful algal blooms on the U . S . west coast , 2004 .

[23]  O. Lindahl,et al.  Overgrazing of edible algae as a mechanism behind red tides and harmful algal blooms , 2006 .

[24]  D. Hutchins,et al.  Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime , 1998, Nature.

[25]  M. Parker,et al.  SYNERGISTIC EFFECTS OF LIGHT, TEMPERATURE, AND NITROGEN SOURCE ON TRANSCRIPTION OF GENES FOR CARBON AND NITROGEN METABOLISM IN THE CENTRIC DIATOM THALASSIOSIRA PSEUDONANA (BACILLARIOPHYCEAE) 1 , 2005 .

[26]  P. Monteiro,et al.  Physical processes contributing to harmful algal blooms in Saldanha Bay, South Africa , 2000 .

[27]  Donald M. Anderson,et al.  Toxic Marine Phytoplankton , 1987 .

[28]  V. Trainer,et al.  Harmful algal blooms in the PICES region of the North Pacific , 2002 .

[29]  Donald M. Anderson,et al.  Physiological ecology of harmful algal blooms , 1998 .

[30]  Marta Estrada,et al.  Functional morphology of organisms involved in red tides, as adapted to decaying turbulence , 1979 .

[31]  F. Wilkerson,et al.  Chapter 17 – Coastal Upwelling , 2008 .

[32]  John L. Largier,et al.  New insights into the controls and mechanisms of plankton productivity in coastal upwelling waters of the Northern California Current System , 2008 .

[33]  S. Fraga,et al.  Chain-forming dinoflagellates: an adaptation to red tides , 1989 .

[34]  D. Stoecker,et al.  Mixotrophy in the dinoflagellate Prorocentrum minimum , 1997 .

[35]  K. Flynn,et al.  Chemical and Physical Factors Influencing Toxin Content , 2006 .

[36]  U. Tillmann,et al.  Phagotrophy in harmful algae , 2006 .

[37]  R. Kudela Chapter 37 – Silicon: Nitrogen Interactions in the Marine Environment , 2008 .

[38]  P. Carlsson,et al.  Utilization of Dissolved Organic Matter (DOM) by Phytoplankton Including Harmful Species , 1998 .

[39]  A. Vaquer,et al.  Contribution of several nitrogen sources to growth of Alexandrium catenella during blooms in Thau lagoon, southern France , 2007 .

[40]  C. Hummert,et al.  Effect of different nitrogen/phosphorus nutrient ratios on the toxin content in Alexandrium minutum , 1999 .

[41]  R. Dugdale,et al.  The kinetics of nitrate and ammonia uptake by natural populations of marine phytoplankton , 1969 .

[42]  V. Trainer,et al.  Domoic acid: The synergy of iron, copper, and the toxicity of diatoms , 2005 .

[43]  Raphael M. Kudela,et al.  The potential role of anthropogenically derived nitrogen in the growth of harmful algae in California, USA , 2008 .

[44]  E. Garcés,et al.  Interactions between ammonium and urea uptake by five strains of Alexandrium catenella (Dinophyceae) in culture , 2008 .

[45]  Yasuwo Fukuyo,et al.  Harmful and toxic algal blooms , 1996 .

[46]  S. Heaney,et al.  Light, temperature and nitrogen as interacting factors affecting diel vertical migrations of dinoflagellates in culture , 1981 .

[47]  P. Donaghay,et al.  Small-scale turbulence affects the division rate and morphology of two red-tide dinoflagellates , 2003 .

[48]  Youlian Pan,et al.  CHANGES IN DOMOIC ACID PRODUCTION AND CELLULAR CHEMICAL COMPOSITION OF THE TOXIGENIC DIATOM PSEUDO‐NITZSCHIA MULTISERIES UNDER PHOSPHATE LIMITATION 1 , 1996 .

[49]  G. Hallegraeff,et al.  Vertical migration of the toxic dinoflagellate Gymnodinium catenatum under different concentrations of nutrients and humic substances in culture , 2006 .

[50]  C. Moloney,et al.  Short-term variability during an anchor station study in the southern Benguela upwelling system: Phytoplankton dynamics , 1991 .

[51]  F. Chavez,et al.  Biomass and productivity in Monterey Bay, California: contribution of the large phytoplankton , 2000 .

[52]  D. Stoecker,et al.  Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications , 1998 .

[53]  Microplankton composition off NW Iberia at the end of the upwelling season: source areas of harmful dinoflagellate blooms , 2008 .

[54]  Vera L. Trainer,et al.  The distribution and impacts of harmful algal bloom species in eastern boundary upwelling systems , 2010 .

[55]  G. Hallegraeff,et al.  Harmful Algal Blooms 2000 , 2001 .

[56]  H. Maske,et al.  Dark Uptake of Nitrate and Nitrate Reductase Activity of a Red-Tide Population Off Peru , 1982 .

[57]  M. Estrada,et al.  Biological interactions in enclosed plankton communities including Alexandrium catenella and copepods: Role of phosphorus , 2008 .

[58]  G. Hallegraeff,et al.  Intraspecific variation in the selenium requirement of different geographic strains of the toxic dinoflagellate Gymnodinium catenatum , 2000 .

[59]  D. Hutchins,et al.  Phytoplankton community response to a manipulation of bioavailable iron in HNLC waters of the subtropical Pacific Ocean , 2004 .

[60]  O. Matsuda,et al.  Utilization of dissolved organic phosphorus by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae) , 2002 .

[61]  B. Hickey,et al.  The physical oceanography of upwelling systems and the development of harmful algal blooms. , 2010, Progress in oceanography.

[62]  W. Cochlan,et al.  Nitrogen utilization by the raphidophyte Heterosigma akashiwo: Growth and uptake kinetics in laboratory cultures , 2007 .

[63]  Youlian Pan,et al.  Effects of silicate limitation on production of domoic acid, a neurotoxin, by the diatom Pseudo-nitzschia multiseries. I. Batch culture studies , 1996 .

[64]  H. Jeong,et al.  Feeding by red-tide dinoflagellates on the cyanobacterium Synechococcus , 2005 .

[65]  L. Edler,et al.  29 NOVEL AND NUISANCE PHYTOPLANKTON BLOOMS IN THE SEA : EVIDENCE FOR A GLOBAL EPIDEMIC , 2022 .

[66]  M. Tomczak The Importance of Being Quantitative , 2005 .

[67]  T. Smayda Ecological features of harmful algal blooms in coastal upwelling ecosystems , 2000 .

[68]  I. J. Hodgkiss,et al.  Are changes in N:P ratios in coastal waters the key to increased red tide blooms? , 1997, Hydrobiologia.

[69]  G. Hallegraeff,et al.  VEGETATIVE REPRODUCTION AND SEXUAL LIFE CYCLE OF THE TOXIC DINOFLAGELLATE GYMNODINIUM CATENATUM FROM TASMANIA, AUSTRALIA 1 , 1989 .

[70]  Tamiji Yamamoto,et al.  Pulsed nutrient supply as a factor inducing phytoplankton diversity , 2004 .

[71]  K. Flynn Attack is not the best form of defense: Lessons from harmful algal bloom dynamics , 2008 .

[72]  R. Margalef Life-forms of phytoplankton as survival alternatives in an unstable environment , 1978 .

[73]  F. Chavez,et al.  Alkaline phosphatase activity in the phytoplankton communities of Monterey Bay and San Francisco Bay , 2006 .

[74]  J. McCarthy,et al.  Isotope dilution models of uptake and remineralization of ammonium by marine plankton1 , 1982 .

[75]  J. G. Field,et al.  The size-based dynamics of plankton food webs. I. A simulation model of carbon and nitrogen flows , 1991 .

[76]  Donald M. Anderson,et al.  Harmful algal blooms , 2018, General Information Product.

[77]  P. Cecchi,et al.  NITROGENOUS NUTRITION OF ALEXANDRIUM CATENELLA (DINOPHYCEAE) IN CULTURES AND IN THAU LAGOON, SOUTHERN FRANCE 1 , 2004 .

[78]  J. Camp,et al.  Pseudo-nitzschia spp. (Bacillariophyceae) and dissolved organic matter (DOM) dynamics in the Ebro Delta (Alfacs Bay, NW Mediterranean Sea) , 2009 .

[79]  J. Burkholder,et al.  Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences , 2002 .

[80]  D. Hutchins,et al.  An iron limitation mosaic in the California upwelling regime , 1998 .

[81]  M. Dickson,et al.  Nitrate uptake rates in a coastal upwelling regime: A comparison of PN‐specific, absolute, and Chl a‐specific rates , 1995 .

[82]  G. Hallegraeff,et al.  Growth and biomass stimulation of the toxic dinoflagellate Gymnodinium catenatum (Graham) by dissolved organic substances , 1999 .

[83]  T. Smayda,et al.  Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea , 1997 .

[84]  Oliver N. Ross,et al.  GEOHAB Core Research Project: HABs in Stratified Systems. "Advances and Challenges for Understanding Physical-Biological Interactions in HABs in Stratified Environments" , 2013 .

[85]  C. Davis,et al.  Use of the perturbation technique to measure nutrient uptake rates of natural phytoplankton populations , 1977 .

[86]  Libe Washburn,et al.  Circulation and environmental conditions during a toxigenic Pseudo-nitzschia australis bloom in the Santa Barbara Channel, California , 2006 .

[87]  L. Ignatiades,et al.  Field and culture studies on the ecophysiology of the toxic dinoflagellate Alexandrium minutum (Halim) present in greek coastal waters , 2007 .

[88]  R. Kudela,et al.  Influence of a buoyant river plume on phytoplankton nutrient dynamics: What controls standing stocks and productivity? , 2009 .

[89]  R. Kudela,et al.  Inorganic and organic nitrogen uptake by the toxigenic diatom Pseudo-nitzschia australis (Bacillariophyceae) , 2008 .

[90]  R. Kudela,et al.  Nitrogen and carbon uptake kinetics and the influence of irradiance for a red tide bloom off southern California , 2000 .

[91]  U. Sommer,et al.  The influence of the frequency of periodic disturbances on the maintenance of phytoplankton diversity , 1986, Oecologia.

[92]  J. Huisman,et al.  Biodiversity of plankton by species oscillations and chaos , 1999, Nature.

[93]  F. Wilkerson,et al.  Nutrient controls on new production in the Bodega Bay, California, coastal upwelling plume , 2006 .

[94]  Andrew M. Fischer,et al.  A coastal ocean extreme bloom incubator , 2008 .

[95]  J. C. Goldman,et al.  Comparative rapid ammonium uptake by four species of marine phytoplankton1 , 1982 .

[96]  P. Harrison,et al.  The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology , 1991 .

[97]  C. Gobler,et al.  Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States. , 2008, Harmful algae.

[98]  S. Mehta,et al.  Response of a natural phytoplankton assemblage to pulsed supply of phosphorus in semicontinuous cultures , 1999 .

[99]  B. Reguera,et al.  Thin layers of Pseudo‐nitzschia spp. and the fate of Dinophysis acuminata during an upwelling‐downwelling cycle in a Galician RÃa , 2008 .

[100]  D. Anderson,et al.  Identification and enumeration of Alexandrium spp. from the Gulf of Maine using molecular probes , 2005 .

[101]  Q. Dortch,et al.  Chapter 4 Phytoplankton - Nitrogen Interactions , 1989 .

[102]  T. Saino,et al.  Nitrogen uptake by natural populations of phytoplankton and primary production in the Pacific Ocean: Regional variability of uptake capacity† , 1985 .

[103]  D. Button On the theory of control of microbial growth kinetics by limiting nutrient concentrations , 1978 .

[104]  Mutsuo Ichinomiya,et al.  Role of heterotrophic dinoflagellates in the fate of diatoms released from fast ice in coastal water of Lützow-Holm Bay, East Antarctica , 2009 .

[105]  T. Smayda Turbulence, watermass stratification and harmful algal blooms: an alternative view and frontal zones as “pelagic seed banks” , 2002 .

[106]  S. Bates,et al.  The Ecology of Harmful Diatoms , 2006 .

[107]  J. T. Turner,et al.  Ecology of harmful algae , 2006 .

[108]  G. Hallegraeff A review of harmful algal blooms and their apparent global increase , 1993 .

[109]  C. Davis,et al.  Marine diatoms grown in chemostats under silicate or ammonium limitation. II. Transient response of Skeletonema costatum to a single addition of the limiting nutrient , 1976 .

[110]  J. G. Field,et al.  General allometric equations for rates of nutrient uptake, ingestion, and respiration in plankton organisms , 1989 .

[111]  John J. Cullen,et al.  Effects of nitrate on the diurnal vertical migration, carbon to nitrogen ratio, and the photosynthetic capacity of the dinoflagellate Gymnodinium splendens , 1981 .

[112]  Andrew M. Fischer,et al.  Influences of upwelling and downwelling winds on red tide bloom dynamics in Monterey Bay, California , 2009 .

[113]  Raphael M. Kudela,et al.  Development of a logistic regression model for the prediction of toxigenic Pseudo-nitzschia blooms in Monterey Bay, California. , 2009 .

[114]  S. Baek,et al.  Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: The role of temperature, light intensity and photoperiod , 2008 .

[115]  F. Fraga,et al.  New and regenerated production in relation to the proliferation of diatoms and dinoflagellates in natural conditions , 1995 .

[116]  E. Garcés,et al.  SHORT‐TERM TEMPORAL VARIABILITY OF AMMONIUM AND UREA UPTAKE BY ALEXANDRIUM CATENELLA (DINOPHYTA) IN CULTURES 1 , 2008, Journal of phycology.

[117]  J. Goering,et al.  UPTAKE OF NEW AND REGENERATED FORMS OF NITROGEN IN PRIMARY PRODUCTIVITY1 , 1967 .

[118]  Vera L. Trainer,et al.  Harmful Algal Blooms in Coastal Upwelling Systems , 2005 .

[119]  K. James,et al.  Effects of selenium, iron and cobalt addition to growth and yessotoxin production of the toxic marine dinoflagellate Protoceratium reticulatum in culture , 2004 .

[120]  M. Silver,et al.  A shift in the dominant toxin-producing algal species in central California alters phycotoxins in food webs. , 2009 .

[121]  D. Stoecker,et al.  Feeding in the mixotrophic dinoflagellate Ceratium furca is influenced by intracellular nutrient concentrations , 2003 .

[122]  E. Berdalet,et al.  Effects of pulsed nutrient enrichment on enclosed phytoplankton: ecophysiological and successional responses , 2003 .

[123]  Paul G. Falkowski,et al.  Primary Productivity and Biogeochemical Cycles in the Sea , 1992 .

[124]  H. Bowers,et al.  Intra- and interspecies differences in growth and toxicity of Pseudo-nitzschia while using different nitrogen sources , 2009 .

[125]  R. Kudela,et al.  Cryptic Blooms: Are Thin Layers the Missing Connection? , 2008 .

[126]  James J. McCarthy,et al.  HALF‐SATURATION CONSTANTS FOR UPTAKE OF NITRATE AND AMMONIUM BY MARINE PHYTOPLANKTON1 , 1969 .

[127]  S. Taguchi,et al.  Variability in Toxicity of the Dinoflagellate Alexandrium Tamarense Isolated from Hiroshima Bay, Western Japan, as a Reflection of Changing Environmental Conditions , 2001 .

[128]  W. Vincent,et al.  Nitrogen utilisation by size-fractionated phytoplankton assemblages associated with an upwelling event off Westland, New Zealand , 1992 .

[129]  V. Trainer,et al.  An ecological study of a massive bloom of toxigenic Pseudo‐nitzschia cuspidata off the Washington State coast , 2009 .

[130]  J. Ryan,et al.  Physical-biological coupling in Monterey Bay, California: topographic influences on phytoplankton ecology , 2005 .

[131]  F. Chavez,et al.  The impact of coastal runoff on ocean color during an El Nio year in Central California , 2004 .

[132]  Jane M. Lewis,et al.  Lingulodinium polyedrum (Gonyaulax polyedra) a blooming dinoflagellate , 1997 .

[133]  Aditee Mitra,et al.  Promotion of harmful algal blooms by zooplankton predatory activity , 2006, Biology Letters.

[134]  M. Silver,et al.  The emergence of Cochlodinium along the California Coast (USA) , 2008 .

[135]  H. Jeong,et al.  Mixotrophy in the Phototrophic Harmful Alga Cochlodinium polykrikoides (Dinophycean): Prey Species, the Effects of Prey Concentration, and Grazing Impact , 2004, The Journal of eukaryotic microbiology.

[136]  John P. Ryan,et al.  Linking the physiology and ecology of Cochlodinium to better understand harmful algal bloom events: A comparative approach , 2008 .

[137]  L. Alexander Large marine ecosystems , : A new focus for marine resources management , 1993 .

[138]  David M. Checkley,et al.  THE STATE OF THE CALIFORNIA CURRENT, 2002-2003: TROPICAL AND SUBARCTIC INFLUENCES VIE FOR DOMINANCE , 2003 .

[139]  V. Trainer,et al.  Recent domoic acid closures of shellfish harvest areas in Washington State inland waterways , 2007 .

[140]  Patricia M. Glibert,et al.  Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters , 2008 .

[141]  P. Falkowski,et al.  Scaling-up from nutrient physiology to the size-structure of phytoplankton communities , 2006 .

[142]  Engel G. Vrieling,et al.  TOXIC PHYTOPLANKTON BLOOMS IN THE SEA , 1993 .

[143]  Elena Litchman,et al.  The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. , 2007, Ecology letters.

[144]  D. Anderson,et al.  Urease activity in cultures and field populations of the toxic dinoflagellate Alexandrium , 2003 .

[145]  S. Bates Ecophysiology and Metabolism of ASP Toxin Production , 1998 .

[146]  A. Devol,et al.  Nitrogen in the Marine Environment , 1985 .

[147]  V. P. Devassy,et al.  Growth kinetics and nutrient requirements of two tropical marine phytoplankters , 1973 .

[148]  Cástor Guisande,et al.  Ecological advantages of toxin production by the dinoflagellate Alexandrium minutum under phosphorus limitation , 2002 .

[149]  D. Stoecker,et al.  Spatial and temporal aspects of Gyrodinium galatheanum in Chesapeake Bay: distribution and mixotrophy , 2000 .

[150]  E. Berdalet,et al.  Turbucence and phytoplankton life , 1997 .

[151]  Barbara M. Hickey,et al.  Coastal oceanography of Washington and Oregon , 1989 .

[152]  D. Anderson,et al.  Influence of upwelling relaxation on dinoflagellates and shellfish toxicity in Ria de Vigo, Spain , 1988 .

[153]  Patricia M. Glibert,et al.  Characterization of the affinity for nitrogen, uptake kinetics, and environmental relationships for Prorocentrum minimum in natural blooms and laboratory cultures , 2003 .

[154]  R. Kudela,et al.  12 The requirements for forecasting harmful algal blooms in the Benguela , 2006 .

[155]  W. Sunda Trace Metals and Harmful Algal Blooms , 2006 .

[156]  D. M. Anderson,et al.  The comparative "systems" approach to HAB research , 2005 .

[157]  Paul J. Harrison,et al.  Effects of nutrient limitation on toxin production and composition in the marine dinoflagellate Protogonyaulax tamarensis , 1987 .

[158]  K. Flynn Variations in the maximum transport rates for ammonium and nitrate in the prymnesiophyte Emiliania huxleyi and the raphidophyte Heterosigma carterae , 1999 .

[159]  V. Trainer,et al.  Intrinsic growth and microzooplankton grazing on toxigenic Pseudo‐nitzschia spp. diatoms from the coastal northeast Pacific , 2008 .

[160]  K. Bruland,et al.  Domoic acid binds iron and copper: a possible role for the toxin produced by the marine diatom Pseudo-nitzschia , 2001 .

[161]  F. G. Figueiras,et al.  Upwelling-downwelling sequences in the generation of red tides m a coastal upwelling system , 1994 .

[162]  P. Glibert,et al.  Temporal and spatial variability in nitrogen uptake kinetics during harmful dinoflagellate blooms in the East China Sea , 2010 .

[163]  R. Kudela,et al.  Planktonic growth and grazing in the Columbia River plume region: a biophysical model study , 2009 .

[164]  T. Probyn,et al.  Nitrogen nutrition in assemblages dominated by Pseudo-nitzschia spp., Alexandrium catenella and Dinophysis acuminata off the west coast of South Africa , 2009 .

[165]  N. Ladizinsky The influence of dissolved copper on the production of domoic acid by Pseudo-nitzschia species in Monterey Bay, California : laboratory experiments and field observations , 2003 .

[166]  S. Taguchi,et al.  Variability in toxicity of the dinoflagellate Alexandrium tamarense in response to different nitrogen sources and concentrations. , 2004, Toxicon : official journal of the International Society on Toxinology.

[167]  B. Reguera,et al.  Changes in toxins, intracellular and dissolved free amino acids of the toxic dinoflagellate Gymnodinium catenatum in response to changes in inorganic nutrients and salinity , 1996 .

[168]  Patricia M. Glibert,et al.  Prorocentrum minimum (Pavillard) Schiller A review of a harmful algal bloom species of growing worldwide importance , 2005 .

[169]  Q. Dortch,et al.  The interaction between ammonium and nitrate uptake in phytoplankton , 1990 .

[170]  Richard C. Dugdale,et al.  The role of ammonium and nitrate in spring bloom development in San Francisco Bay , 2007 .

[171]  K. Tarutani,et al.  Nitrate and phosphate uptake kinetics of the harmful diatom Eucampia zodiacus Ehrenberg, a causative organism in the bleaching of aquacultured Porphyra thalli , 2009 .

[172]  Sallie W. Chisholm,et al.  Emergent Biogeography of Microbial Communities in a Model Ocean , 2007, Science.

[173]  N. Haigh,et al.  First record of blooms of Cochlodinium sp. (Gymnodiniales, Dinophyceae) causing mortality to aquacultured salmon on the west coast of Canada , 2001 .

[174]  S. L'Helguen,et al.  NITROGEN UPTAKE AND ASSIMILATION KINETICS IN ALEXANDRIUM MINUTUM (DYNOPHYCEAE): EFFECT OF N‐LIMITED GROWTH RATE ON NITRATE AND AMMONIUM INTERACTIONS 1 , 2007 .

[175]  S. Oh,et al.  Growth and uptake kinetics for nitrate, ammonium and phosphate by the toxic dinoflagellate Gymnodinium catenatum isolated from Hiroshima Bay, Japan , 2004 .

[176]  Youlian Pan,et al.  Production of Domoic Acid by Pseudo‐nitzschia multiseries Hasle, Affected by Lithium , 1998 .

[177]  J. Fauchot,et al.  Competition for phosphorus between two dinoflagellates: A toxic Alexandrium minutum and a non-toxic Heterocapsa triquetra , 2008 .

[178]  Dag L. Aksnes,et al.  A theoretical model for nutrient uptake in phytoplankton , 1991 .

[179]  V. Trainer,et al.  Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas , 2010, Proceedings of the National Academy of Sciences.

[180]  A. Vaquer,et al.  ACCLIMATION OF NITRATE UPTAKE BY PHYTOPLANKTON TO HIGH SUBSTRATE LEVELS 1 , 2005 .

[181]  H. Jeong,et al.  Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previ- ously known to be mixotrophic , 2005 .

[182]  G. Hasle Are most of the domoic acid-producing species of the diatom genus Pseudo-nitzschia cosmopolites? , 2002 .

[183]  T. Switzer Urea loading from a spring storm—Knysna estuary, South Africa , 2008 .

[184]  J. Camp,et al.  The significance of organic nutrients in the nutrition of Pseudo-nitzschia delicatissima (Bacillariophyceae) , 2009 .

[185]  C. Reynolds,et al.  Community Assembly in Marine Phytoplankton: Application of Recent Models to Harmful Dinoflagellate Blooms , 2001 .

[186]  Mati Kahru,et al.  MODIS detects a devastating algal bloom in Paracas Bay, Peru , 2004 .