Fault tolerant quantum key distributions using entanglement swapping of GHZ states over collective-noise channels

This work proposes two fault tolerant quantum key distribution (QKD) protocols. Each of which is robust under one kind of collective noises: collective-dephasing noise and collective-rotation noise, respectively. Due to the use of the entanglement swapping of Greenberger–Horne–Zeilinger (GHZ) state as well as the decoy logical qubits, the new protocols provide the best qubit efficiency among the existing fault tolerant QKD protocols over the same collective-noise channel. The receiver simply performs two Bell measurements to obtain the raw key. Moreover, the proposed protocols are free from several well-known attacks and can also be secure over a lossy channel.

[1]  Yan-Song Li,et al.  FAULT-TOLERATE QUANTUM KEY DISTRIBUTION OVER A COLLECTIVE-NOISE CHANNEL , 2010 .

[2]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[3]  Xiao Li,et al.  Increasing the Efficiencies of Random-Choice-Based Quantum Communication Protocols with Delayed Measurement , 2004 .

[4]  Li Dong,et al.  Quantum key distribution protocols with six-photon states against collective noise , 2009 .

[5]  Chun-Wei Yang,et al.  Thwarting intercept-and-resend attack on Zhang’s quantum secret sharing using collective rotation noises , 2012, Quantum Inf. Process..

[6]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[7]  Chun-Wei Yang,et al.  Quantum dialogue protocols immune to collective noise , 2013, Quantum Inf. Process..

[8]  Tzonelih Hwang,et al.  EPR quantum key distribution protocols with potential 100% qubit efficiency , 2007, IET Inf. Secur..

[9]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[10]  Chia-Wei Tsai,et al.  Improvement on “Quantum Key Agreement Protocol with Maximally Entangled States” , 2011 .

[11]  Fuguo Deng,et al.  Improving the security of multiparty quantum secret sharing against Trojan horse attack , 2005, quant-ph/0506194.

[12]  Fuguo Deng,et al.  Improving the security of secure direct communication based on the secret transmitting order of particles , 2006, quant-ph/0612016.

[13]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[14]  Tzonelih Hwang,et al.  New Efficient Three-Party Quantum Key Distribution Protocols , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[16]  Wen Qiao-Yan,et al.  Quantum blind signature based on Two-State Vector Formalism , 2010 .

[17]  Adan Cabello,et al.  Six-qubit permutation-based decoherence-free orthogonal basis , 2007, quant-ph/0702118.

[18]  Xi-Han Li,et al.  Efficient quantum key distribution over a collective noise channel (6 pages) , 2008, 0808.0042.

[19]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[20]  Tzonelih Hwang,et al.  Intercept–resend attacks on Chen et al.'s quantum private comparison protocol and the improvements , 2011 .

[21]  Chun-Wei Yang,et al.  Enhancement on “quantum blind signature based on two-state vector formalism” , 2013, Quantum Inf. Process..

[22]  Tzonelih Hwang,et al.  An enhancement on Shi et al.'s multiparty quantum secret sharing protocol , 2011 .

[23]  R. Laflamme,et al.  Robust polarization-based quantum key distribution over a collective-noise channel. , 2003, Physical review letters.

[24]  Zhan-jun Zhang Robust multiparty quantum secret key sharing over two collective-noise channels , 2006 .

[25]  Yuguang Yang,et al.  Three-party quantum secret sharing against collective noise , 2010, Quantum Information Processing.

[26]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[27]  Deng Fu-Guo,et al.  Erratum: Improving the security of multiparty quantum secret sharing against Trojan horse attack [Phys. Rev. A 72, 044302 (2005)] , 2006 .

[28]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[29]  Chun-Wei Yang,et al.  Revisiting Deng et al.’s Multiparty Quantum Secret Sharing Protocol , 2011 .

[30]  Q. Cai Eavesdropping on the two-way quantum communication protocols with invisible photons , 2005, quant-ph/0508002.

[31]  Tzonelih Hwang,et al.  Provably Secure Three-Party Authenticated Quantum Key Distribution Protocols , 2007, IEEE Transactions on Dependable and Secure Computing.

[32]  Yu-Bo Sheng,et al.  Fault tolerant quantum key distribution based on quantum dense coding with collective noise , 2009, 0904.0056.

[33]  Tzonelih Hwang,et al.  Quantum key distribution protocol using dense coding of three-qubit W state , 2011 .

[34]  Qiaoyan Wen,et al.  Robust variations of the Bennett-Brassard 1984 protocol against collective noise , 2009 .

[35]  Chun-Wei Yang,et al.  Fault tolerant two-step quantum secure direct communication protocol against collective noises , 2011 .

[36]  Zhan-Jun Zhang,et al.  An efficient multiparty quantum key distribution scheme , 2005 .

[37]  Ueli Maurer,et al.  Generalized privacy amplification , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[38]  T. Hwang,et al.  Improved QSDC Protocol over a Collective-Dephasing Noise Channel , 2012 .

[39]  Ying Sun,et al.  Improving the multiparty quantum secret sharing over two collective-noise channels against insider attack , 2010 .

[40]  Gilles Brassard,et al.  Privacy Amplification by Public Discussion , 1988, SIAM J. Comput..