Evaluation of the Andromas Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Aerobically Growing Gram-Positive Bacilli

ABSTRACT Matrix-associated laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a rapid and simple microbial identification method. Previous reports using the Biotyper system suggested that this technique requires a preliminary extraction step to identify Gram-positive rods (GPRs), a technical issue that may limit the routine use of this technique to identify pathogenic GPRs in the clinical setting. We tested the accuracy of the MALDI-TOF MS Andromas strategy to identify a set of 659 GPR isolates representing 16 bacterial genera and 72 species by the direct colony method. This bacterial collection included 40 C. diphtheriae, 13 C. pseudotuberculosis, 19 C. ulcerans, and 270 other Corynebacterium isolates, 32 L. monocytogenes and 24 other Listeria isolates, 46 Nocardia, 75 Actinomyces, 18 Actinobaculum, 11 Propionibacterium acnes, 18 Propionibacterium avidum, 30 Lactobacillus, 21 Bacillus, 2 Rhodococcus equi, 2 Erysipelothrix rhusiopathiae, and 38 other GPR isolates, all identified by reference techniques. Totals of 98.5% and 1.2% of non-Listeria GPR isolates were identified to the species or genus level, respectively. Except for L. grayi isolates that were identified to the species level, all other Listeria isolates were identified to the genus level because of highly similar spectra. These data demonstrate that rapid identification of pathogenic GPRs can be obtained without an extraction step by MALDI-TOF mass spectrometry.

[1]  R. Hirata,et al.  A PCR for dtxR gene: application to diagnosis of non-toxigenic and toxigenic Corynebacterium diphtheriae. , 2008, Molecular and cellular probes.

[2]  D. Raoult,et al.  Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[3]  Robin Patel,et al.  Identification of Non-diphtheriae Corynebacterium by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry , 2011, Journal of Clinical Microbiology.

[4]  N. Højlyng,et al.  Ten Cases of Actinobaculum schaalii Infection: Clinical Relevance, Bacterial Identification, and Antibiotic Susceptibility , 2005, Journal of Clinical Microbiology.

[5]  P. Berche,et al.  Rapid Identification of Mycobacterial Whole Cells in Solid and Liquid Culture Media by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry , 2010, Journal of Clinical Microbiology.

[6]  G Greub,et al.  Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry as an Alternative to 16S rRNA Gene Sequencing for Identification of Difficult-To-Identify Bacterial Strains , 2010, Journal of Clinical Microbiology.

[7]  J. Peacock,et al.  Erysipelothrix rhusiopathiae endocarditis: microbiologic, epidemiologic, and clinical features of an occupational disease. , 1988, Reviews of infectious diseases.

[8]  J. Freney,et al.  Multicenter evaluation of the updated and extended API (RAPID) Coryne database 2.0 , 1997, Journal of clinical microbiology.

[9]  M. Danielsen,et al.  Susceptibility of Lactobacillus spp. to antimicrobial agents. , 2003, International journal of food microbiology.

[10]  H. Nielsen,et al.  Actinobaculum schaalii: A common cause of urinary tract infection in the elderly population. Bacteriological and clinical characteristics , 2010, Scandinavian journal of infectious diseases.

[11]  J. Mainardi,et al.  The β‐lactam‐sensitive d,d‐carboxypeptidase activity of Pbp4 controls the l,d and d,d transpeptidation pathways in Corynebacterium jeikeium , 2009, Molecular microbiology.

[12]  P. Berche,et al.  Rapid Identification of Staphylococci Isolated in Clinical Microbiology Laboratories by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry , 2007, Journal of Clinical Microbiology.

[13]  G. Perrière,et al.  BIBI, a Bioinformatics Bacterial Identification Tool , 2003, Journal of Clinical Microbiology.

[14]  R. Christen,et al.  Species identities and antimicrobial susceptibilities of corynebacteria isolated from various clinical sources , 1996, European Journal of Clinical Microbiology and Infectious Diseases.

[15]  Hyo Youl Kim,et al.  Actinomyces graevenitzii bacteremia in a patient with alcoholic liver cirrhosis. , 2011, Anaerobe.

[16]  J. Rocourt,et al.  API Listeria, a new and promising one-day system to identify Listeria isolates , 1992, Applied and environmental microbiology.

[17]  P. Berche,et al.  MALDI-TOF MS Andromas strategy for the routine identification of bacteria, mycobacteria, yeasts, Aspergillus spp. and positive blood cultures. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[18]  P. Berche,et al.  Real-Time Identification of Bacteria and Candida Species in Positive Blood Culture Broths by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry , 2010, Journal of Clinical Microbiology.

[19]  A. Goesmann,et al.  The lifestyle of Corynebacterium urealyticum derived from its complete genome sequence established by pyrosequencing. , 2008, Journal of biotechnology.

[20]  J. McLauchlin The identification of Listeria species. , 1997, International journal of food microbiology.

[21]  S. Ehlers,et al.  Infection of the skin caused by Corynebacterium ulcerans and mimicking classical cutaneous diphtheria. , 2001, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[22]  Bernard La Scola,et al.  Intact cell MALDI-TOF mass spectrometry-based approaches for the diagnosis of bloodstream infections , 2011, Expert review of molecular diagnostics.

[23]  Trinad Chakraborty,et al.  Rapid Identification and Typing of Listeria Species by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry , 2008, Applied and Environmental Microbiology.

[24]  D. Raoult,et al.  Comparison between rpoB and 16S rRNA Gene Sequencing for Molecular Identification of 168 Clinical Isolates of Corynebacterium , 2005, Journal of Clinical Microbiology.

[25]  G. Garrity Bergey’s Manual® of Systematic Bacteriology , 2012, Springer New York.

[26]  P. Berche,et al.  Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species. , 2011, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[27]  P. Lawson,et al.  Most Corynebacterium xerosis strains identified in the routine clinical laboratory correspond to Corynebacterium amycolatum , 1996, Journal of clinical microbiology.

[28]  M. Hogardt,et al.  Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry as a tool for rapid diagnosis of potentially toxigenic Corynebacterium species in the laboratory management of diphtheria-associated bacteria. , 2010, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[29]  C. Buchrieser,et al.  The Genus Listeria and Listeria monocytogenes: Phylogenetic Position, Taxonomy, and Identification , 2007 .

[30]  K. Bernard,et al.  Cutaneous Diphtheria in the Urban Poor Population of Vancouver, British Columbia, Canada: a 10-Year Review , 2011, Journal of Clinical Microbiology.

[31]  G. Funke,et al.  Natural antibiotic susceptibility of Listeria species: L. grayi, L. innocua, L. ivanovii, L. monocytogenes, L. seeligeri and L. welshimeri strains. , 2000, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[32]  P. Wattiau,et al.  Corynebacterium simulans sp. nov., a non-lipophilic, fermentative Corynebacterium. , 2000, International journal of systematic and evolutionary microbiology.

[33]  V. Hall Actinomyces--gathering evidence of human colonization and infection. , 2008, Anaerobe.

[34]  X. Nassif,et al.  Identification of clinical coagulase-negative staphylococci, isolated in microbiology laboratories, by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and two automated systems. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[35]  M. Collins,et al.  Phylogenetic analysis of the genus Listeria based on reverse transcriptase sequencing of 16S rRNA. , 1991, International journal of systematic bacteriology.

[36]  P. Berche,et al.  Corynebacterium pseudotuberculosis necrotizing lymphadenitis in a twelve-year-old patient. , 2006, The Pediatric infectious disease journal.

[37]  Y. Glupczynski,et al.  Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Nocardia Species , 2010, Journal of Clinical Microbiology.

[38]  W. Ludwig,et al.  Corynebacterium aurimucosum sp. nov. and emended description of Corynebacterium minutissimum Collins and Jones (1983). , 2002, International journal of systematic and evolutionary microbiology.

[39]  S. Pounds,et al.  Identification of Clinical Coryneform Bacterial Isolates: Comparison of Biochemical Methods and Sequence Analysis of 16S rRNA and rpoB Genes , 2007, Journal of Clinical Microbiology.

[40]  V. Rodriguez-Nava,et al.  Use of PCR-Restriction Enzyme Pattern Analysis and Sequencing Database for hsp65 Gene-Based Identification of Nocardia Species , 2006, Journal of Clinical Microbiology.

[41]  Jean-Louis Herrmann,et al.  Robustness of two MALDI-TOF mass spectrometry systems for bacterial identification. , 2012, Journal of microbiological methods.

[42]  P. Woo,et al.  Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. , 2008, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[43]  E. Könönen,et al.  Evaluation of Four Commercial Test Systems for Identification of Actinomyces and Some Closely Related Species , 2004, Journal of Clinical Microbiology.

[44]  K. Bernard,et al.  Clinical microbiology of coryneform bacteria , 1997, Clinical microbiology reviews.

[45]  P. Berche,et al.  Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Nonfermenting Gram-Negative Bacilli Isolated from Cystic Fibrosis Patients , 2008, Journal of Clinical Microbiology.

[46]  D. Raoult,et al.  MALDI-TOF-mass spectrometry applications in clinical microbiology. , 2010, Future microbiology.

[47]  Etienne Carbonnelle,et al.  MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. , 2011, Clinical biochemistry.

[48]  P. Lambert,et al.  Propionibacterium acnes , 2006, Letters in applied microbiology.

[49]  A. Miyoshi,et al.  Multiplex PCR assay for identification of Corynebacterium pseudotuberculosis from pure cultures and for rapid detection of this pathogen in clinical samples. , 2007, Journal of medical microbiology.

[50]  S. Hillier,et al.  Comparison of API 50 CH Strips to Whole-Chromosomal DNA Probes for Identification of Lactobacillus Species , 2005, Journal of Clinical Microbiology.

[51]  K. Søby,et al.  Actinobaculum schaalii, a Common Uropathogen in Elderly Patients, Denmark , 2010, Emerging infectious diseases.

[52]  B Sallen,et al.  Comparative analysis of 16S and 23S rRNA sequences of Listeria species. , 1996, International journal of systematic bacteriology.

[53]  T. Fujisawa,et al.  Evaluation of media for determining hemolytic activity and that of API Listeria system for identifying strains of Listeria monocytogenes , 1994, Journal of clinical microbiology.

[54]  Robin Patel,et al.  Comparison of Direct Colony Method versus Extraction Method for Identification of Gram-Positive Cocci by Use of Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry , 2011, Journal of Clinical Microbiology.

[55]  Robin Patel,et al.  Comparison of Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometer to BD Phoenix Automated Microbiology System for Identification of Gram-Negative Bacilli , 2011, Journal of Clinical Microbiology.