High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration.

Thin-film nanocomposite membranes containing a range of 50-150 nm metal-organic framework (MOF) nanoparticles [ZIF-8, MIL-53(Al), NH2-MIL-53(Al) and MIL-101(Cr)] in a polyamide (PA) thin film layer were synthesized via in situ interfacial polymerization on top of cross-linked polyimide porous supports. MOF nanoparticles were homogeneously dispersed in the organic phase containing trimesoyl chloride prior to the interfacial reaction, and their subsequent presence in the PA layer formed was inferred by a combination of contact angle measurements, FT-IR spectroscopy, SEM, EDX, XPS, and TEM. Membrane performance in organic solvent nanofiltration was evaluated on the basis of methanol (MeOH) and tetrahydrofuran (THF) permeances and rejection of styrene oligomers (PS). The effect of different post-treatments and MOF loadings on the membrane performance was also investigated. MeOH and THF permeance increased when MOFs were embedded into the PA layer, whereas the rejection remained higher than 90% (molecular weight cutoff of less than 232 and 295 g·mol(-1) for MeOH and THF, respectively) in all membranes. Moreover, permeance enhancement increased with increasing pore size and porosity of the MOF used as filler. The incorporation of nanosized MIL-101(Cr), with the largest pore size of 3.4 nm, led to an exceptional increase in permeance, from 1.5 to 3.9 and from 1.7 to 11.1 L·m(-2)·h(-1)·bar(-1) for MeOH/PS and THF/PS, respectively.

[1]  F. Kapteijn,et al.  Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential , 2013 .

[2]  Cong-jie Gao,et al.  Preparation of monodispersed spherical mesoporous nanosilica–polyamide thin film composite reverse osmosis membranes via interfacial polymerization , 2013 .

[3]  E. Chen,et al.  Tuning the aspect ratio of NH2-MIL-53(Al) microneedles and nanorods via coordination modulation , 2013 .

[4]  Eun-Sik Kim,et al.  Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification , 2012 .

[5]  A. Livingston,et al.  High flux membranes for organic solvent nanofiltration (OSN)—Interfacial polymerization with solvent activation , 2012 .

[6]  C. Janiak,et al.  Metal-organic frameworks in mixed-matrix membranes for gas separation. , 2012, Dalton transactions.

[7]  Ting Yang,et al.  Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols , 2012 .

[8]  A. Livingston,et al.  Nanoprobe imaging molecular scale pores in polymeric membranes , 2012 .

[9]  Xinlei Liu,et al.  An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols. , 2011, Angewandte Chemie.

[10]  F. Spill,et al.  The effect of membrane formation parameters on performance of polyimide membranes for organic solven , 2011 .

[11]  Eun-Sik Kim,et al.  Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesop , 2011 .

[12]  F. Kapteijn,et al.  Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption , 2011 .

[13]  S. Jhung,et al.  Facile synthesis of nano-sized metal-organic frameworks, chromium-benzenedicarboxylate, MIL-101 , 2011 .

[14]  M. Carreon,et al.  Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. , 2010, Journal of the American Chemical Society.

[15]  S. Basu,et al.  Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks , 2009 .

[16]  Jürgen Caro,et al.  Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. , 2009, Journal of the American Chemical Society.

[17]  Yang Yang,et al.  Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[18]  O. Shekhah,et al.  Thin films of metal-organic frameworks. , 2009, Chemical Society reviews.

[19]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[20]  F. Kapteijn,et al.  Amino-based metal-organic frameworks as stable, highly active basic catalysts , 2009 .

[21]  Hyun-Yong Lee,et al.  Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles , 2008 .

[22]  Pieter Vandezande,et al.  Solvent resistant nanofiltration: separating on a molecular level. , 2008, Chemical Society reviews.

[23]  A. Livingston,et al.  Polymeric membranes for nanofiltration in polar aprotic solvents , 2007 .

[24]  Andrew G. Livingston,et al.  The influence of membrane formation parameters on the functional performance of organic solvent nanofiltration membranes , 2007 .

[25]  Eric M.V. Hoek,et al.  Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes , 2007 .

[26]  Benny D. Freeman,et al.  Effect of crosslinked chain length in sulfonated polyimide membranes on water sorption, proton conduction, and methanol permeation properties , 2006 .

[27]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[28]  C. Serre,et al.  First Direct Imaging of Giant Pores of the Metal−Organic Framework MIL-101 , 2005 .

[29]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[30]  Roumiana P. Stateva,et al.  Effect of concentration polarisation and osmotic pressure on flux in organic solvent nanofiltration , 2004 .

[31]  P. Tin,et al.  Effects of cross-linking modification on gas separation performance of Matrimid membranes , 2003 .

[32]  S. V. Joshi,et al.  Novel membrane processes for separation of organics , 2003 .

[33]  Jong-Gyu Kim,et al.  The changes of membrane performance with polyamide molecular structure in the reverse osmosis process , 2000 .

[34]  R. J. Petersen,et al.  Composite reverse osmosis and nanofiltration membranes , 1993 .

[35]  S. M. Aharoni,et al.  The solubility parameters of aromatic polyamides , 1992 .

[36]  G. Tesoro,et al.  On the crosslinking mechanism of benzophenone-containing polyimides , 1988 .