A Versatile Strategy for the Implementation of Adaptive Splines
暂无分享,去创建一个
[1] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[2] Giancarlo Sangalli,et al. Nonlinear static isogeometric analysis of arbitrarily curved Kirchhoff-Love shells , 2015, International Journal of Mechanical Sciences.
[3] Tom Lyche,et al. Generalized spline spaces over T-meshes: Dimension formula and locally refined generalized B-splines , 2016, Appl. Math. Comput..
[4] C. C. Law,et al. ParaView: An End-User Tool for Large-Data Visualization , 2005, The Visualization Handbook.
[5] Carlotta Giannelli,et al. Adaptive isogeometric methods with hierarchical splines: error estimator and convergence , 2015, 1502.00565.
[6] Bert Jüttler,et al. Adaptively refined multi-patch B-splines with enhanced smoothness , 2016, Appl. Math. Comput..
[7] Amy Henderson,et al. The ParaView Guide: A Parallel Visualization Application , 2004 .
[8] Bert Jüttler,et al. Algorithms and Data Structures for Truncated Hierarchical B-splines , 2012, MMCS.
[9] Giancarlo Sangalli,et al. ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .
[10] Jiansong Deng,et al. A new basis for PHT-splines , 2015, Graph. Model..
[11] A. Buffa,et al. New refinable spaces and local approximation estimates for hierarchical splines , 2015, 1507.06534.
[12] Trond Kvamsdal,et al. On the similarities and differences between Classical Hierarchical, Truncated Hierarchical and LR B-splines , 2015 .
[13] Bert Jüttler,et al. Geometry + Simulation Modules: Implementing Isogeometric Analysis , 2014 .
[14] Andrea Bressan,et al. Some properties of LR-splines , 2013, Comput. Aided Geom. Des..
[15] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[16] Mario Kapl,et al. Isogeometric analysis with geometrically continuous functions on two-patch geometries , 2015, Comput. Math. Appl..
[17] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[18] M. Brovka,et al. A simple strategy for defining polynomial spline spaces over hierarchical T-meshes , 2016, Comput. Aided Des..
[19] Philipp Morgenstern. 3D Analysis-suitable T-splines: definition, linear independence and m-graded local refinement , 2015 .
[20] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[21] John A. Evans,et al. Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .
[22] Daniel Peterseim,et al. Analysis-suitable adaptive T-mesh refinement with linear complexity , 2014, Comput. Aided Geom. Des..
[23] Mark Ainsworth,et al. Bernstein-Bézier Finite Elements of Arbitrary Order and Optimal Assembly Procedures , 2011, SIAM J. Sci. Comput..
[24] Markus Kästner,et al. Bézier extraction and adaptive refinement of truncated hierarchical NURBS , 2016 .
[25] G. Sangalli,et al. Approximation properties of multi-patch $C^1$ isogeometric spaces , 2015 .
[26] Bert Jüttler,et al. On the completeness of hierarchical tensor-product B-splines , 2014, J. Comput. Appl. Math..
[27] Christophe Rabut. Locally tensor product functions , 2004, Numerical Algorithms.
[28] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[29] Joseph O'Rourke,et al. Handbook of Discrete and Computational Geometry, Second Edition , 1997 .
[30] Philipp Morgenstern,et al. Globally Structured Three-Dimensional Analysis-Suitable T-Splines: Definition, Linear Independence and m-graded local refinement , 2015, SIAM J. Numer. Anal..
[31] Daniel Peterseim,et al. Adaptive mesh refinement strategies in isogeometric analysis— A computational comparison , 2016, 1605.00825.
[32] Bert Jüttler,et al. A hierarchical construction of LR meshes in 2D , 2015, Comput. Aided Geom. Des..
[33] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[34] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[35] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[36] Giancarlo Sangalli,et al. Analysis-suitable G1 multi-patch parametrizations for C1 isogeometric spaces , 2016, Comput. Aided Geom. Des..
[37] Xin Li,et al. Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.
[38] Gert Vegter,et al. In handbook of discrete and computational geometry , 1997 .
[39] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.
[40] Rafael Vázquez,et al. Algorithms for the implementation of adaptive isogeometric methods using hierarchical splines , 2016 .
[41] Bert Jüttler,et al. TDHB-splines: The truncated decoupled basis of hierarchical tensor-product splines , 2014, Comput. Aided Geom. Des..
[42] Bruce F. Naylor,et al. Set operations on polyhedra using binary space partitioning trees , 1987, SIGGRAPH.