Iodine Waste Form Corrosion: PNNL Summary Testing Report

[1]  S. Bruffey,et al.  Iodosodalite synthesis with hot isostatic pressing of precursors produced from aqueous and hydrothermal processes , 2020 .

[2]  J. Lian,et al.  Immobilization of cesium and iodine into Cs3Bi2I9 perovskite-silica composites and core-shell waste forms with high waste loadings and chemical durability. , 2020, Journal of hazardous materials.

[3]  H. Ryu,et al.  Non-volatile immobilization of iodine by the cold-sintering of iodosodalite. , 2019, Journal of hazardous materials.

[4]  N. Canfield,et al.  Ceramic waste form process for immobilizing iodine in glass-bonded iodosodalite , 2019 .

[5]  Steven R. Baum,et al.  Leach Testing of Laboratory-Scale Melter Evaporator Condensate Cementitious Waste Forms , 2019 .

[6]  K. Valsaraj,et al.  Effect of solution chemistry on the iodine release from iodoapatite in aqueous environments , 2019, Journal of Nuclear Materials.

[7]  E. Maddrell,et al.  Silver iodide sodalite – Wasteform / Hip canister interactions and aqueous durability , 2019, Journal of Nuclear Materials.

[8]  N. Chen,et al.  Iodine speciation in a silver-amended cementitious system. , 2019, Environment international.

[9]  J. Crum,et al.  Investigating the Durability of Iodine Waste Forms in Dilute Conditions , 2019, Materials.

[10]  H. Ryu,et al.  Cold sintering and durability of iodate-substituted calcium hydroxyapatite (IO-HAp) for the immobilization of radioiodine , 2019, Journal of Nuclear Materials.

[11]  J. Matyáš,et al.  Silver-functionalized silica aerogels and their application in the removal of iodine from aqueous environments. , 2019, Journal of hazardous materials.

[12]  S. Bruffey,et al.  Preparation of Four Large-format Hot Isostatically Pressed I-AgZ Waste Form Samples for Performance Testing , 2018 .

[13]  L. Kovarik,et al.  Silver-functionalized silica aerogel: towards an understanding of aging on iodine sorption performance , 2018, RSC advances.

[14]  E. Vance,et al.  Immobilization of iodine via copper iodide , 2018, Journal of Nuclear Materials.

[15]  Steven R. Baum,et al.  Effluent Management Facility Evaporator Bottoms: Waste Streams Formulation and Waste Form Qualification Testing , 2018 .

[16]  B. Riley,et al.  Glass-bonded iodosodalite waste form for immobilization of 129I , 2018 .

[17]  B. Riley,et al.  Iodosodalite Waste Forms from Low-Temperature Aqueous Process , 2018 .

[18]  K. Valsaraj,et al.  Mechanism of iodine release from iodoapatite in aqueous solution , 2018 .

[19]  R. Russell,et al.  Updated Liquid Secondary Waste Grout Formulation and Preliminary Waste Form Qualification , 2017 .

[20]  A. Grandjean,et al.  Durability testing of an iodate-substituted hydroxyapatite designed for the conditioning of 129I , 2017 .

[21]  M. Yim,et al.  Glass composite waste forms for iodine confined in bismuth-embedded SBA-15 , 2016 .

[22]  Edgar C. Buck,et al.  Getter Incorporation into Cast Stone and Solid State Characterizations , 2016 .

[23]  N. Canfield,et al.  Silica-based waste form for immobilization of iodine from reprocessing plant off-gas streams , 2016 .

[24]  Christopher F. Brown,et al.  Evidence of technetium and iodine release from a sodalite-bearing ceramic waste form , 2016 .

[25]  James L. Jerden,et al.  Materials and processes for the effective capture and immobilization of radioiodine: A review , 2016 .

[26]  T. Nenoff,et al.  Development and Durability Testing of a Low-Temperature Sintering Bi–Si–Zn Oxide Glass Composite Material (GCM) 129I Waste Form , 2015 .

[27]  T. Nenoff,et al.  Complete Initial Scoping Tests on the Incorporation of Novel Loaded Iodine Getters into GCM. , 2015 .

[28]  Joseph H. Westsik,et al.  Extended Leach Testing of Simulated LAW Cast Stone Monoliths , 2015 .

[29]  Oar,et al.  Subpart H: National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities , 2015 .

[30]  Y. Suetsugu Synthesis of lead vanadate iodoapatite utilizing dry mechanochemical process , 2014 .

[31]  S. Bruffey,et al.  Expanded Analysis of Hot Isostatic Pressed Iodine-Loaded Silver-Exchanged Mordenite , 2014 .

[32]  R. Ewing,et al.  Bulk Iodoapatite Ceramic Densified by Spark Plasma Sintering with Exceptional Thermal Stability , 2014 .

[33]  M. Stennett,et al.  The durability of iodide sodalite , 2014 .

[34]  J. Matyáš,et al.  Assessment of Methods to Consolidate Iodine-Loaded Silver-Functionalized Silica Aerogel , 2013 .

[35]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[36]  Dorina F. Sava,et al.  Iodine Confinement into Metal–Organic Frameworks (MOFs): Low-Temperature Sintering Glasses To Form Novel Glass Composite Material (GCM) Alternative Waste Forms , 2012 .

[37]  A. Grandjean,et al.  Incorporation of iodates into hydroxyapatites: a new approach for the confinement of radioactive iodine , 2011 .

[38]  H. Owada,et al.  Development of New Waste Forms to Immobilize Iodine-129 Released from a Spent Fuel Reprocessing Plant , 2010 .

[39]  O. M. Slyunchev,et al.  Magnesium potassium phosphate matrices for immobilization of high-level liquid wastes , 2009 .

[40]  Eric M. Pierce,et al.  An experimental study of the dissolution rates of simulated aluminoborosilicate waste glasses as a function of pH and temperature under dilute conditions , 2008 .

[41]  Neil C. Hyatt,et al.  Silver Zeolites: Iodide Occlusion and conversion to Sodalite – a potential 129 I waste form? , 2006 .

[42]  E. Maddrell,et al.  A Comparison of Wasteforms and Processes for the Immobilisation of Iodine-129 , 2003 .

[43]  T. Advocat,et al.  New conditionings for separated long-lived radionuclides , 2002 .

[44]  Z. Szántó,et al.  Diffusion of 3H, 99Tc, 125I, 36Cl and 85Sr in granite, concrete and bentonite , 2002 .

[45]  Plasma-Atomic Emission Spectrometry Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT) 1 , 2002 .

[46]  Masayoshi Uno,et al.  Some properties of a lead vanado-iodoapatite Pb10(VO4)6I2 , 2001 .