Solution of geometrically parametrised problems within a CAD environment via model order reduction

Abstract The main objective of this work is to describe a general and original approach for computing an off-line solution for a set of parameters describing the geometry of the domain. That is, a solution able to include information for different geometrical parameter values and also allowing to compute readily the sensitivities. Instead of problem dependent approaches, a general framework is presented for standard engineering environments where the geometry is defined by means of NURBS. The parameters controlling the geometry are now the control points characterising the NURBS curves or surfaces. The approach proposed here, valid for 2D and 3D scenarios, allows a seamless integration with CAD preprocessors. The proper generalised decomposition (PGD), which is applied here to compute explicit geometrically parametrised solutions, circumvents the curse of dimensionality. Moreover, optimal convergence rates are shown for PGD approximations of incompressible flows.

[1]  Grégory Legrain,et al.  A NURBS enhanced extended finite element approach for unfitted CAD analysis , 2013 .

[2]  David Néron,et al.  Integration of PGD-virtual charts into an engineering design process , 2016 .

[3]  Gianluigi Rozza,et al.  Fundamentals of reduced basis method for problems governed by parametrized PDEs and applications , 2014 .

[4]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[5]  A. Huerta,et al.  Parametric solutions involving geometry: A step towards efficient shape optimization , 2014 .

[6]  F. Chinesta,et al.  Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity , 2012 .

[7]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[8]  D. Faddeev,et al.  Computational methods of linear algebra , 1959 .

[9]  Adrien Leygue,et al.  A First Step Towards the Use of Proper General Decomposition Method for Structural Optimization , 2010 .

[10]  Arthur Cayley,et al.  II. A memoir on the theory of matrices , 1858, Philosophical Transactions of the Royal Society of London.

[11]  George Biros,et al.  A fast algorithm for simulating vesicle flows in three dimensions , 2011, J. Comput. Phys..

[12]  A. Huerta,et al.  Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: Application to harbor agitation , 2015 .

[13]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[14]  Samuel,et al.  Propulsion of Microorganisms by Surface Distortions. , 1996, Physical review letters.

[15]  T. Heuzé,et al.  Parametric modeling of an electromagnetic compression device with the proper generalized decomposition , 2016 .

[16]  Per-Olof Persson,et al.  Curved mesh generation and mesh refinement using Lagrangian solid mechanics , 2008 .

[17]  Oubay Hassan,et al.  The generation of triangular meshes for NURBS‐enhanced FEM , 2016 .

[18]  D. G. Mead Newton's Identities , 1992 .

[19]  A. J. Gil,et al.  A unified approach for a posteriori high-order curved mesh generation using solid mechanics , 2016 .

[20]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[21]  Antonio Huerta,et al.  HDG-NEFEM with Degree Adaptivity for Stokes Flows , 2018, Journal of Scientific Computing.

[22]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[23]  Charbel Farhat,et al.  Reduced-order fluid/structure modeling of a complete aircraft configuration , 2006 .

[24]  Pedro Díez,et al.  Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications , 2015 .

[25]  K. Morgan,et al.  The generation of arbitrary order curved meshes for 3D finite element analysis , 2013 .

[26]  Adrien Leygue,et al.  The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer , 2013 .

[27]  A. DeSimone,et al.  Optimal strokes for axisymmetric microswimmers , 2009, The European physical journal. E, Soft matter.

[28]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[29]  A. Ammar,et al.  PGD-Based Computational Vademecum for Efficient Design, Optimization and Control , 2013, Archives of Computational Methods in Engineering.

[30]  Gianluigi Rozza,et al.  Reduced Order Methods for Modeling and Computational Reduction , 2013 .

[31]  Simona Perotto,et al.  A POD‐selective inverse distance weighting method for fast parametrized shape morphing , 2017, International Journal for Numerical Methods in Engineering.

[32]  Antonio Huerta,et al.  Generalized parametric solutions in Stokes flow , 2017, 1704.02817.

[33]  A. Huerta,et al.  NURBS-Enhanced Finite Element Method (NEFEM) , 2011 .

[34]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[35]  Antony Jameson,et al.  Facilitating the Adoption of Unstructured High-Order Methods Amongst a Wider Community of Fluid Dynamicists , 2011 .

[36]  M. C. Delfour,et al.  Shapes and Geometries - Metrics, Analysis, Differential Calculus, and Optimization, Second Edition , 2011, Advances in design and control.

[37]  Francisco Chinesta,et al.  PGD for solving multidimensional and parametric models , 2014 .

[38]  R. Freund Model reduction methods based on Krylov subspaces , 2003, Acta Numerica.