Simultaneous interfacial misfit array formation and antiphase domain suppression on miscut silicon substrate

The authors describe simultaneous interfacial misfit (IMF) array formation along with antiphase domain (APD) suppression in highly mismatched (Δa0/a0=13%) AlSb grown on a 5° miscut Si (001) substrate. Strain energy from the AlSb/Si heterojunction is accommodated by a self-assembled two-dimensional array of pure 90° dislocations confined to the interface. The 13% lattice mismatch establishes the AlSb/Si IMF period of ∼3.46 nm. This IMF spacing is well matched to the step length of the 5° miscut Si (001) substrate. Furthermore, the miscut substrate geometry suppresses APD formation due to the double step height. The resulting bulk material has both very low defect density (∼7×105/cm2) and very low APD density (∼103/cm2) confirmed by transmission electron microscope images. This material is expected to be desirable for electronic III-V devices on Si substrates.

[1]  Hisashi Shichijo,et al.  Dislocation reduction by impurity diffusion in epitaxial GaAs grown on Si , 1988 .

[2]  Harry L. T. Lee,et al.  Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers , 2003 .

[3]  Diana L. Huffaker,et al.  Epitaxial growth and formation of interfacial misfit array for tensile GaAs on GaSb , 2007 .

[4]  H. Choi,et al.  Heteroepitaxy on silicon , 1988 .

[5]  Rustum Roy,et al.  Materials Research Society , 1984 .

[6]  Diana L. Huffaker,et al.  Strain relief by periodic misfit arrays for low defect density GaSb on GaAs , 2006 .

[7]  Sanjay Krishna,et al.  Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates , 1999 .

[8]  Hadis Morkoç,et al.  Characterization of GaAs grown on Si epitaxial layers on GaAs substrates , 1991 .

[9]  Adriana Passaseo,et al.  Interpretation of phase and strain contrast of TEM images ofInxGa1−xAs/GaAsquantum dots , 2001 .

[10]  Barbier,et al.  Observation of the double-step-single-step transition on a vicinal surface of Si(100). , 1991, Physical review. B, Condensed matter.

[11]  Steven A. Ringel,et al.  Monolithic integration of AlGaInP laser diodes on SiGe∕Si substrates by molecular beam epitaxy , 2006 .

[12]  C. Majumder,et al.  Structural and electronic properties of Sin, Sin+, and AlSin-1 (n=2-13) clusters: Theoretical investigation based on ab initio molecular orbital theory , 2004 .

[13]  Park,et al.  Clustering effect and residual stress in InxGa1-xAs/GaAs strained layer grown by metal-organic chemical-vapor deposition. , 1995, Physical review. B, Condensed matter.

[14]  S. Krishna,et al.  Room-Temperature Optically Pumped (Al)GaSb Vertical-Cavity Surface-Emitting Laser Monolithically Grown on an Si(1 0 0) Substrate , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Diana L. Huffaker,et al.  1.54 lm GaSb/AlGaSb multi-quantum-well monolithic laser at 77 K grown on miscut Si substrate using interfacial misfit arrays , 2007 .

[16]  Z. Mi,et al.  Groove-Coupled InGaAs/GaAs Quantum Dot Laser/Waveguide on Silicon , 2007, Journal of Lightwave Technology.

[17]  M.A. Smith,et al.  Investigations of high-performance GaAs solar cells grown on Ge-Si/sub 1-x/Ge/sub x/-Si substrates , 2005, IEEE Transactions on Electron Devices.

[18]  Steven A. Ringel,et al.  Toward device-quality GaAs growth by molecular beam epitaxy on offcut Ge/Si1−xGex/Si substrates , 1998 .