Analysis of Hyperion data with the FLAASH atmospheric correction algorithm

A combination of good spatial and spectral resolution make visible to shortwave infrared spectral imaging from aircraft or spacecraft a highly valuable technology for remote sensing of the Earth's surface. Many applications require the elimination of atmospheric effects caused by molecular and particulate scattering; a process known as atmospheric correction, compensation, or removal. The Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) atmospheric correction code derives its physics-based algorithm from the MODTRAN4 radiative transfer code. A new spectra; recalibration algorithm, which has been incorporated into FLAASH, is described. Results from processing Hyperion data with FLAASH are discussed.