A reduction theorem to compute fixpoints of fuzzy closure operators

Abstract We present a reduction theorem which relates sets of fixpoints of fuzzy closure operators to sets of fixpoints of ordinary closure operators. As a result we obtain a method to compute sets of fixpoints of fuzzy closure operators by algorithms available for ordinary operators. We also provide explicit descriptions of selected algorithms which result from the presented approach.

[1]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[2]  Bernard De Baets,et al.  Computing the Lattice of All Fixpoints of a Fuzzy Closure Operator , 2010, IEEE Transactions on Fuzzy Systems.

[3]  Radim Belohlávek,et al.  Crisply Generated Fuzzy Concepts , 2005, ICFCA.

[4]  Petr Hájek,et al.  On very true , 2001, Fuzzy Sets Syst..

[5]  R. Belohlávek Fuzzy Relational Systems: Foundations and Principles , 2002 .

[6]  Radim Belohlávek,et al.  Concept lattices and order in fuzzy logic , 2004, Ann. Pure Appl. Log..

[7]  Radim Belohlávek,et al.  Reduction and a Simple Proof of Characterization of Fuzzy Concept Lattices , 2001, Fundam. Informaticae.

[8]  Sergei O. Kuznetsov,et al.  Comparing performance of algorithms for generating concept lattices , 2002, J. Exp. Theor. Artif. Intell..

[9]  Vilém Vychodil,et al.  Formal concept analysis and linguistic hedges , 2012, Int. J. Gen. Syst..

[10]  Vilém Vychodil,et al.  Fast algorithm for computing fixpoints of Galois connections induced by object-attribute relational data , 2012, Inf. Sci..

[11]  K. I. Rosenthal Quantales and their applications , 1990 .

[12]  Stanislav Krajci,et al.  A Generalized Concept Lattice , 2005, Log. J. IGPL.

[13]  R. Belohlávek Fuzzy Closure Operators , 2001 .

[14]  Vilém Vychodil,et al.  Attribute dependencies for data with grades II*,† , 2016, Int. J. Gen. Syst..

[15]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[16]  Silke Pollandt Fuzzy Begriffe: formale Begriffsanalyse von unscharfen Daten , 1997 .

[17]  Vilém Vychodil,et al.  Fuzzy Closure Operators with Truth Stressers , 2005, Log. J. IGPL.

[18]  A. Jaoua,et al.  Discovering knowledge from fuzzy concept lattice , 2001 .

[19]  Simon Andrews,et al.  A 'Best-of-Breed' approach for designing a fast algorithm for computing fixpoints of Galois Connections , 2015, Inf. Sci..

[20]  Satoko Titani,et al.  Globalization of intui tionistic set theory , 1987, Ann. Pure Appl. Log..

[21]  Vilém Vychodil,et al.  Parallel algorithm for computing fixpoints of Galois connections , 2010, Annals of Mathematics and Artificial Intelligence.

[22]  R. Belohlavek,et al.  Isotone Galois connections and concept lattices with hedges , 2008, 2008 4th International IEEE Conference Intelligent Systems.

[23]  Jan Konecny,et al.  Isotone fuzzy Galois connections with hedges , 2011, Inf. Sci..