Coherent manipulation of a three-dimensional maximally entangled state

Maximally entangled photon pairs with a spatial degree of freedom is a potential way for realizing high-capacity quantum computing and communication. However, methods to generate such entangled states with high quality, high brightness, and good controllability are needed. Here, a scheme is experimentally demonstrated that generates spatially maximally entangled photon pairs with an orbital angular momentum degree of freedom via spontaneous parametric down-conversion in a nonlinear crystal. Compared with existing methods using post-selection, the technique can directly modulate the spatial spectrum of down-converted photon pairs by engineering the input pump beam. In addition, the relative phase between spatially entangled photon pairs can be easily manipulated by preparing the relative phase of input pump states.

[1]  A. A. Almazov,et al.  Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  H Bechmann-Pasquinucci,et al.  Quantum cryptography with 3-state systems. , 2000, Physical review letters.

[3]  Mario Krenn,et al.  Generation of the Complete Four-dimensional Bell Basis , 2017, 1707.05760.

[4]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[5]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[6]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[7]  S. Massar,et al.  Bell inequalities for arbitrarily high-dimensional systems. , 2001, Physical review letters.

[8]  Andrew Forbes,et al.  Engineering two-photon high-dimensional states through quantum interference , 2016, Science Advances.

[9]  Yan Li,et al.  CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer. , 2015, Optics express.

[10]  A. Yao Angular momentum decomposition of entangled photons with an arbitrary pump , 2010, 1012.5021.

[11]  Yin-Hai Li,et al.  On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire , 2017 .

[12]  Zach DeVito,et al.  Opt , 2017 .

[13]  Guang-Can Guo,et al.  High-dimensional entanglement between distant atomic-ensemble memories , 2014, Light: Science & Applications.

[14]  A. Zeilinger,et al.  Entanglement in mutually unbiased bases , 2011, 1102.2080.

[15]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[16]  W. Munro,et al.  Qudit quantum-state tomography , 2002 .

[17]  Michael J. Strain,et al.  Micrometer-scale integrated silicon source of time-energy entangled photons , 2014, 1409.4881.

[18]  G. Guo,et al.  Quantum Storage of Three-Dimensional Orbital-Angular-Momentum Entanglement in a Crystal. , 2014, Physical review letters.

[19]  S. Kulik,et al.  Spatial Bell-State Generation without Transverse Mode Subspace Postselection. , 2017, Physical review letters.

[20]  Andrew G. White,et al.  Engineered optical nonlinearity for quantum light sources. , 2010, Optics express.

[21]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[22]  C. Roeloffzen,et al.  Compact and reconfigurable silicon nitride time-bin entanglement circuit , 2015, 1506.02758.

[23]  J. P. Torres,et al.  Quantum spiral bandwidth of entangled two-photon states , 2003 .

[24]  Jeffrey H Shapiro,et al.  Spectral engineering by Gaussian phase-matching for quantum photonics. , 2013, Optics express.

[25]  A. Vaziri,et al.  Experimental two-photon, three-dimensional entanglement for quantum communication. , 2002, Physical review letters.

[26]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[27]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[28]  Juan P. Torres,et al.  Preparation of engineered two-photon entangled states for multidimensional quantum information , 2003 .

[29]  Guang-Can Guo,et al.  Experimental Test of Compatibility-Loophole-Free Contextuality with Spatially Separated Entangled Qutrits. , 2016, Physical review letters.

[30]  A. I. Lvovsky,et al.  Quantum-optical state engineering up to the two-photon level , 2009, 0908.4113.

[31]  M J Padgett,et al.  Characterization of high-dimensional entangled systems via mutually unbiased measurements. , 2012, Physical review letters.

[32]  S. P. Walborn,et al.  Entanglement and conservation of orbital angular momentum in spontaneous parametric down-conversion , 2004 .

[33]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[34]  Stanislav Straupe,et al.  Quantum state engineering with twisted photons via adaptive shaping of the pump beam , 2018, Physical Review A.

[35]  T. Jennewein,et al.  Spatially correlated photonic qutrit pairs using pump beam modulation technique , 2017, OSA Continuum.

[36]  A. Zeilinger,et al.  High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments. , 2017, Physical review letters.

[37]  Mario Krenn,et al.  Entanglement by Path Identity. , 2016, Physical review letters.

[38]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[39]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[40]  P. Deng,et al.  Spectrally Pure States at Telecommunications Wavelengths from Periodically PoledMTiOXO4(M=K, Rb, Cs;X=P, As) Crystals , 2016, 1612.09374.

[41]  Christine Silberhorn,et al.  Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings , 2018, 1803.04316.

[42]  Leonardo Neves,et al.  Generation of entangled states of qudits using twin photons. , 2004, Physical review letters.

[43]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[44]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[45]  Stephen M. Barnett,et al.  Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces , 2010 .

[46]  A. Zeilinger,et al.  Multi-photon entanglement in high dimensions , 2015, Nature Photonics.

[47]  Stephen M. Barnett,et al.  Full characterization of the quantum spiral bandwidth of entangled biphotons , 2010, 1011.5970.

[48]  E. Riis,et al.  Spiral bandwidth of four-wave mixing in Rb vapour , 2018, Communications Physics.

[49]  Roberto Morandotti,et al.  On-chip generation of high-dimensional entangled quantum states and their coherent control , 2017, Nature.