A modified rabbit model of reperfused myocardial infarction for cardiac MR imaging research

[1]  Yicheng Ni,et al.  Metalloporphyrins and Functional Analogues as MRI Contrast Agents , 2008 .

[2]  Kathleen Vunckx,et al.  Non-invasive detection and quantification of acute myocardial infarction in rabbits using mono-[123I]iodohypericin microSPECT. , 2007, European heart journal.

[3]  W. Wang,et al.  A minimally invasive model of myocardial infarction made by video-assisted thoracoscopic surgery. , 2007, Methods and findings in experimental and clinical pharmacology.

[4]  Guy Marchal,et al.  Magnetic Resonance Imaging of Acute Reperfused Myocardial Infarction: Intraindividual Comparison of ECIII-60 and Gd-DTPA in a Swine Model , 2007, CardioVascular and Interventional Radiology.

[5]  A. van Rossum,et al.  Clinical applications of cardiovascular magnetic resonance imaging , 2006, Canadian Medical Association Journal.

[6]  Wei Li,et al.  Magnetic resonance imaging of myocardial infarction using a manganese‐based contrast agent (EVP 1001‐1): Preliminary results in a Dog model , 2006, Journal of magnetic resonance imaging : JMRI.

[7]  J. Vallée,et al.  Current status of cardiac MRI in small animals , 2004, Magnetic Resonance Materials in Physics, Biology and Medicine.

[8]  Guy Marchal,et al.  Necrosis Avid Contrast Agents: Functional Similarity Versus Structural Diversity , 2004, Investigative radiology.

[9]  Stuart S Berr,et al.  Simultaneous Evaluation of Infarct Size and Cardiac Function in Intact Mice by Contrast-Enhanced Cardiac Magnetic Resonance Imaging Reveals Contractile Dysfunction in Noninfarcted Regions Early After Myocardial Infarction , 2004, Circulation.

[10]  S. Neubauer,et al.  Assessment of motion gating strategies for mouse magnetic resonance at high magnetic fields , 2004, Journal of magnetic resonance imaging : JMRI.

[11]  Kieran Clarke,et al.  Fast, high‐resolution in vivo cine magnetic resonance imaging in normal and failing mouse hearts on a vertical 11.7 T system , 2003, Journal of magnetic resonance imaging : JMRI.

[12]  Dan W Rettmann,et al.  Accurate and Objective Infarct Sizing by Contrast-enhanced Magnetic Resonance Imaging in a Canine Myocardial Infarction Model , 2022 .

[13]  Wolfgang Ebert,et al.  Imaging of myocardial infarction: comparison of magnevist and gadophrin-3 in rabbits. , 2002, Journal of the American College of Cardiology.

[14]  Hilde Bosmans,et al.  Value of T2-Weighted Magnetic Resonance Imaging Early After Myocardial Infarction in Dogs: Comparison With Bis-Gadolinium-Mesoporphyrin Enhanced T1-Weighted Magnetic Resonance Imaging and Functional Data From Cine Magnetic Resonance Imaging , 2002, Investigative radiology.

[15]  D. Bers Cardiac excitation–contraction coupling , 2002, Nature.

[16]  Alfons Verbruggen,et al.  Necrosis-avid contrast agents: introducing nonporphyrin species. , 2002, Academic radiology.

[17]  J. Oshinski,et al.  Imaging Time After Gd-DTPA Injection Is Critical in Using Delayed Enhancement to Determine Infarct Size Accurately With Magnetic Resonance Imaging , 2001, Circulation.

[18]  S. I. Choi,et al.  Occlusive myocardial infarction: investigation of bis-gadolinium mesoporphyrins-enhanced T1-weighted MR imaging in a cat model. , 2001, Radiology.

[19]  M. Rudin,et al.  In-vivo cardiac studies in animals using magnetic resonance techniques: experimental aspects and MR readouts , 2000, Magma: Magnetic Resonance Materials in Physics, Biology, and Medicine.

[20]  C. Higgins,et al.  Normal and infarcted myocardium: differentiation with cellular uptake of manganese at MR imaging in a rat model. , 2000, Radiology.

[21]  C. Higgins,et al.  Reperfused myocardial infarction as seen with use of necrosis-specific versus standard extracellular MR contrast media in rats. , 1999, Radiology.

[22]  J Bogaert,et al.  Noninvasive measurements of infarct size after thrombolysis with a necrosis-avid MRI contrast agent. , 1999, Circulation.

[23]  C. Higgins,et al.  Detection of acute myocardial ischemia using first‐pass dynamics of MnDPDP on inversion recovery echoplanar imaging , 1999, Journal of magnetic resonance imaging : JMRI.

[24]  J. Vinten-johansen,et al.  Cloricromene Reduces Myocardial Infarct Size in Rabbits When Administered During the Early Reperfusion Period , 1997, Anesthesia and analgesia.

[25]  A Davies,et al.  Oral endotracheal intubation of rabbits (Oryctolagus cuniiculus) , 1996, Laboratory animals.

[26]  K. Mahaffey,et al.  Left ventricular performance and remodeling in rabbits after myocardial infarction. Effects of a thyroid hormone analogue. , 1995, Circulation.

[27]  W Zeller,et al.  A simplified procedure for endotracheal intubation in rabbits , 1994, Laboratory animals.

[28]  M van Bilsen,et al.  Growth and hypertrophy of the heart: towards an understanding of cardiac specific and inducible gene expression. , 1993, Cardiovascular research.

[29]  Alexander Dj,et al.  A simple method of oral endotracheal intubation in rabbits (Oryctolagus cuniculus). , 1980 .

[30]  András Varró,et al.  Action potential duration and force-frequency relationship in isolated rabbit, guinea pig and rat cardiac muscle , 2004, Journal of Comparative Physiology B.

[31]  Masanori Fujita,et al.  A new rabbit model of myocardial infarction without endotracheal intubation. , 2004, The Journal of surgical research.

[32]  H. Bosmans,et al.  Paramagnetic metalloporphyrins: infarct avid contrast agents for diagnosis of acute myocardial infarction by MRI , 2004, European Radiology.

[33]  Jianglin Fan,et al.  Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbit). , 2003, Arteriosclerosis, thrombosis, and vascular biology.

[34]  H. Bosmans,et al.  Intracoronary delivery of Gd-DTPA and Gadophrin-2 for determination of myocardial viability with MR imaging , 2001, European Radiology.

[35]  B. Hoit,et al.  New approaches to phenotypic analysis in adult mice. , 2001, Journal of molecular and cellular cardiology.