Mining Critical Metals and Elements from Seawater: Opportunities and Challenges.

The availability and sustainable supply of technology metals and valuable elements is critical to the global economy. There is a growing realization that the development and deployment of the clean energy technologies and sustainable products and manufacturing industries of the 21st century will require large amounts of critical metals and valuable elements including rare-earth elements (REEs), platinum group metals (PGMs), lithium, copper, cobalt, silver, and gold. Advances in industrial ecology, water purification, and resource recovery have established that seawater is an important and largely untapped source of technology metals and valuable elements. This feature article discusses the opportunities and challenges of mining critical metals and elements from seawater. We highlight recent advances and provide an outlook of the future of metal mining and resource recovery from seawater.

[1]  B. Rivas,et al.  Branched and linear polyethyleneimine supports for resins with retention properties for copper and uranium. VII , 1989 .

[2]  Kenta Ooi,et al.  Recovery of Lithium from Seawater Using Manganese Oxide Adsorbent (H1.6Mn1.6O4) Derived from Li1.6Mn1.6O4 , 2001 .

[3]  César Valderrama,et al.  Extraction of valuable metal ions (Cs, Rb, Li, U) from reverse osmosis concentrate using selective sorbents , 2012 .

[4]  J. Georgiadis,et al.  Science and technology for water purification in the coming decades , 2008, Nature.

[5]  Ugo Bardi,et al.  Extracting Minerals from Seawater: An Energy Analysis , 2010 .

[6]  Kenta Ooi,et al.  Preparation and Adsorptive Properties of Membrane-Type Adsorbents for Lithium Recovery from Seawater , 2002 .

[7]  S. Petoud,et al.  Synthesis and metal binding properties of salicylate-, catecholate-, and hydroxypyridinonate-functionalized dendrimers. , 2001, Chemistry.

[8]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[9]  M. Beneš,et al.  Selective Uptake and Separation of Oxoanions of Molybdenum, Vanadium, Tungsten, and Germanium by Synthetic Sorbents Having Polyol Moieties and Polysaccharide-Based Biosorbents , 2004 .

[10]  Jiaxing Li,et al.  Amidoxime-functionalized magnetic mesoporous silica for selective sorption of U(VI) , 2014 .

[11]  M. Elimelech,et al.  Membrane-based processes for sustainable power generation using water , 2012, Nature.

[12]  A. Koschinsky,et al.  Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources , 2013 .

[13]  Tsuyoshi Hoshino,et al.  Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor , 2015 .

[14]  W. Goddard,et al.  Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[15]  N. Turro,et al.  Characterization of Starburst Dendrimers by the EPR Technique. Copper(II) Ions Binding Full-Generation Dendrimers , 1997 .

[16]  K. Nolan,et al.  Speciation, stability constants and structures of complexes of copper(II), nickel(II), silver(I) and mercury(II) with PAMAM dendrimer and related tetraamide ligands , 2005 .

[17]  I. Gentle,et al.  Structural Studies of Copper(II)−Amine Terminated Dendrimer Complexes by EXAFS , 2004 .

[18]  Myung S. Jhon,et al.  Nanotechnology for sustainable development: retrospective and outlook , 2013, Journal of Nanoparticle Research.

[19]  César Valderrama,et al.  Evaluation of Selective Sorbents for the Extraction of Valuable Metal Ions (Cs, Rb, Li, U) from Reverse Osmosis Rejected Brine , 2010 .

[20]  M O N E C H R I S T I E, ‡ P I R A B A L I N I S W A,et al.  Dendrimer Enhanced Ultrafiltration . 1 . Recovery of Cu ( II ) from Aqueous Solutions Using PAMAM Dendrimers with Ethylene Diamine Core and Terminal NH 2 Groups , 2005 .

[21]  Shubin Liu,et al.  Highly porous and stable metal–organic frameworks for uranium extraction , 2013 .

[22]  R. Crooks,et al.  Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. , 2001, Accounts of chemical research.

[23]  A Pérez-González,et al.  State of the art and review on the treatment technologies of water reverse osmosis concentrates. , 2012, Water research.

[24]  M. Seiler Hyperbranched polymers: Phase behavior and new applications in the field of chemical engineering , 2006 .

[25]  Courtney Scarborough,et al.  Revisiting ocean thermal energy conversion , 2012 .

[26]  Erich A Schneider,et al.  Recovery of Uranium from Seawater: A Review of Current Status and Future Research Needs , 2013 .

[27]  B. Tonn,et al.  Implications: Convergence of Knowledge and Technology for a Sustainable Society , 2013 .

[28]  M. Diallo,et al.  Nanotechnology and clean energy: sustainable utilization and supply of critical materials , 2013, Journal of Nanoparticle Research.

[29]  R. Haag,et al.  Water-soluble pH-responsive dendritic core-shell nanocarriers for polar dyes based on poly(ethylene imine). , 2007, Macromolecular bioscience.

[30]  C. Tsouris,et al.  Uptake of Uranium from Seawater by Amidoxime-Based Polymeric Adsorbent: Field Experiments, Modeling, and Updated Economic Assessment , 2014 .

[31]  William A Goddard,et al.  Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. , 2005, Environmental science & technology.

[32]  R. Valluzzi,et al.  Internal structure of silver-poly(amidoamine) dendrimer complexes and nanocomposites , 2002 .

[33]  J. Burgess Ions in solution , 1999 .

[34]  Gunzo Uchiyama,et al.  The adsorption mechanism of uranium(VI) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group , 2003 .

[35]  R. Rogers,et al.  Surface modification of ionic liquid-spun chitin fibers for the extraction of uranium from seawater: seeking the strength of chitin and the chemical functionality of chitosan , 2014 .

[36]  C. Bowman,et al.  Hyperbranched Chelating Polymers for the Polymer-Assisted Ultrafiltration of Boric Acid , 1999 .

[37]  W. Goddard,et al.  Effect of Solvent and pH on the Structure of PAMAM Dendrimers , 2005 .

[38]  Roald Hoffmann,et al.  Old gas, new gas , 2006 .

[39]  T. Hoshino Preliminary studies of lithium recovery technology from seawater by electrodialysis using ionic liquid membrane , 2013 .

[40]  R. Hancock,et al.  Hard and Soft Acid-Base Behavior in Aqueous Solution: Steric Effects Make Some Metal Ions Hard: A Quantitative Scale of Hardness-Softness for Acids and Bases , 1996 .

[41]  Ana Colaço,et al.  A primer for the Environmental Impact Assessment of mining at seafloor massive sulfide deposits , 2013 .

[42]  William A. Goddard,et al.  Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks , 2012, Journal of Nanoparticle Research.

[43]  Li Shu,et al.  Metal recovery from reverse osmosis concentrate. , 2009 .

[44]  Sidney M. Hecht,et al.  Structural Studies of , 1979 .

[45]  Zhisheng Zhang,et al.  Ligand effects on the phosphoesterase activity of Co(II) Schiff base complexes built on PAMAM dendrimers , 2001 .

[46]  W. Goddard,et al.  Dendritic chelating agents. 2. U(VI) binding to poly(amidoamine) and poly(propyleneimine) dendrimers in aqueous solutions. , 2008, Environmental science & technology.

[47]  Jans H. Alzate-Morales,et al.  Computational study of the complexation of metals ions with poly(amidoamine) PAMAM G0 dendrimers , 2014 .

[48]  Kyoichi Saito,et al.  Aquaculture of Uranium in Seawater by a Fabric-Adsorbent Submerged System , 2003 .

[49]  C. German,et al.  Deep-sea mining of seafloor massive sulfides , 2010 .

[50]  R. Rogers,et al.  Highly selective extraction of the uranyl ion with hydrophobic amidoxime-functionalized ionic liquids via η2 coordination , 2012 .

[51]  Mercouri G. Kanatzidis,et al.  Layered Metal Sulfides Capture Uranium from Seawater. , 2013 .

[52]  Himanshu Mishra,et al.  Branched polymeric media: boron-chelating resins from hyperbranched polyethylenimine. , 2012, Environmental science & technology.

[53]  Madhusudhana Rao Kotte,et al.  A facile route to the preparation of mixed matrix polyvinylidene fluoride membranes with in-situ generated polyethyleneimine particles , 2014 .

[54]  Mamadou S. Diallo,et al.  Nanotechnology for Sustainability: Environment, Water, Food, Minerals, and Climate , 2011 .

[55]  Mamadou S Diallo,et al.  Branched polymeric media: perchlorate-selective resins from hyperbranched polyethyleneimine. , 2012, Environmental science & technology.

[56]  B. R. Coad,et al.  Polyethyleneimine for copper absorption: kinetics, selectivity and efficiency in artificial seawater , 2014 .

[57]  A. Schenning,et al.  Well‐Defined Metallodendrimers by Site‐Specific Complexation , 1997 .

[58]  D. Tomalia,et al.  Dendrimers: Synthetic Science to Controlled Organic Nanostructures and a Window to a New Systematic Framework for Unifying Nanoscience , 2012 .

[59]  B. Moyer,et al.  Fundamentals and applications of anion separations , 2004 .

[60]  S. Akagawa,et al.  Experimental Studies On Rare Metal Collection From Seawater , 2011 .

[61]  H. Chen,et al.  The uptake of radionuclides from aqueous solution by poly(amidoxime) modified reduced graphene oxide , 2014 .

[62]  C. Tsouris,et al.  Seawater uranium sorbents: preparation from a mesoporous copolymer initiator by atom-transfer radical polymerization. , 2013, Angewandte Chemie.