6DOF entropy minimization SLAM for stereo-based wearable devices

In this paper, we propose and validate a novel approach to solve the Simultaneous Localization and Mapping (SLAM), focused on its application with wearable devices. In order to do so, we use a stereo vision camera as the unique sensor that provides semi-dense information of the environment (appearance and range data). A first approximation of the trajectory is given by an egomotion algorithm, that exploits the information of the stereo observations in order to estimate the action between each pair of consecutive observations (visual odometry). The algorithm provides a locally but not globally consistent approximation because it is only based on local information. In order to obtain a globally consistent map, which is the key topic of this paper, we propose an Information Theory based approach that rectifies the map obtained by the egomotion step by performing successive refinements over the trajectory using global information. The key idea is that the best aligned map is the one with the minimum entropy. In order to ensure the scalability of the algorithm, we propose a dynamic map compression strategy that bounds the complexity of the problem and attenuates both memory and computing time requirements. In the experimental section, we show the results of the algorithm in several situations: structured/unstructured environments, indoor/outdoor scenarios, cyclic/acyclic trajectories, etc. performed with a wearable stereo device that we have built to carry out these experiments.

[1]  Henrik I. Christensen,et al.  Graphical SLAM - a self-correcting map , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[2]  Ronald Parr,et al.  DP-SLAM: fast, robust simultaneous localization and mapping without predetermined landmarks , 2003, IJCAI 2003.

[3]  Wolfram Burgard,et al.  An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[4]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  K. Konolige Rough Terrain Visual Odometry , 2007 .

[6]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[7]  Alfred O. Hero,et al.  Applications of entropic spanning graphs , 2002, IEEE Signal Process. Mag..

[8]  Andrew Hogue,et al.  Underwater 3D SLAM through entropy minimization , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[9]  Cyrill Stachniss Recovering Particle Diversity , 2009 .

[10]  Juan Manuel Sáez,et al.  6DOF entropy minimization SLAM , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[11]  Sebastian Thrun,et al.  6D SLAM with an application in autonomous mine mapping , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[12]  Michel Dhome,et al.  Real Time Localization and 3D Reconstruction , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[13]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[14]  Kurt Konolige,et al.  Large-Scale Visual Odometry for Rough Terrain , 2007, ISRR.

[15]  Juan Manuel Saez Martinez,et al.  Stereo-based Aerial Obstacle Detection for the Visually Impaired , 2008 .

[16]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[17]  John J. Leonard,et al.  Robust Mapping and Localization in Indoor Environments Using Sonar Data , 2002, Int. J. Robotics Res..

[18]  Tom Drummond,et al.  Scalable Monocular SLAM , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[19]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[20]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[21]  Joachim Hertzberg,et al.  Evolving interface design for robot search tasks: Research Articles , 2007 .

[22]  Wolfram Burgard,et al.  Recovering Particle Diversity in a Rao-Blackwellized Particle Filter for SLAM After Actively Closing Loops , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[23]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[24]  Peter Cheeseman,et al.  On the Representation and Estimation of Spatial Uncertainty , 1986 .

[25]  Sebastian Thrun,et al.  FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges , 2003, IJCAI.

[26]  Marc Levoy,et al.  The digital Michelangelo project: 3D scanning of large statues , 2000, SIGGRAPH.

[27]  Kurt Konolige,et al.  Large-Scale Map-Making , 2004, AAAI.

[28]  Ioannis Stamos,et al.  Automated feature-based range registration of urban scenes of large scale , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[29]  Wolfram Burgard,et al.  Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[30]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[31]  James J. Little,et al.  Vision-based SLAM using the Rao-Blackwellised Particle Filter , 2005 .

[32]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization and Mapping with Sparse Extended Information Filters , 2004, Int. J. Robotics Res..

[33]  Mads Nielsen,et al.  Scale-space theories in computer vision : Second International Conference, Scale-Space '99, Corfu, Greece, September 26-27, 1999 : proceedings , 1999 .

[34]  Nikos Komodakis,et al.  3D visual reconstruction of large scale natural sites and their fauna , 2005, Signal Process. Image Commun..

[35]  Ian D. Reid,et al.  Mapping Large Loops with a Single Hand-Held Camera , 2007, Robotics: Science and Systems.

[36]  Keiji Nagatani,et al.  Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization , 2001, IEEE Trans. Robotics Autom..

[37]  Deniz Erdogmus,et al.  Adaptive blind deconvolution of linear channels using Renyi's entropy with Parzen window estimation , 2004, IEEE Transactions on Signal Processing.

[38]  Kevin P. Murphy,et al.  Bayesian Map Learning in Dynamic Environments , 1999, NIPS.

[39]  Patrick Rives,et al.  Accurate Quadrifocal Tracking for Robust 3D Visual Odometry , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[40]  Juan Manuel Sáez,et al.  Entropy Minimization SLAM Using Stereo Vision , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[41]  Clark F. Olson,et al.  Rover navigation using stereo ego-motion , 2003, Robotics Auton. Syst..

[42]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[43]  Don Ray Murray,et al.  Selecting stable image features for robot localization using stereo , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[44]  Juan Manuel Sáez,et al.  A global 3D map-building approach using stereo vision , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[45]  Simon Lacroix,et al.  High resolution terrain mapping using low attitude aerial stereo imagery , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[46]  Stefan B. Williams,et al.  Efficient Simultaneous Localisation and Mapping Using Local Submaps , 2001 .

[47]  Joachim Hertzberg,et al.  An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments , 2003, Robotics Auton. Syst..

[48]  Paul Newman,et al.  Outdoor SLAM using visual appearance and laser ranging , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[49]  A. Hero,et al.  Estimation of Renyi information divergence via pruned minimal spanning trees , 1999, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. SPW-HOS '99.

[50]  James J. Little,et al.  Vision-based mapping with backward correction , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[51]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[52]  Kurt Konolige,et al.  Incremental mapping of large cyclic environments , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[53]  Takeo Kanade,et al.  A multiple-baseline stereo , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[54]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[55]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[56]  Joachim Hertzberg,et al.  6D SLAM—3D mapping outdoor environments , 2007, J. Field Robotics.

[57]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[58]  Timothy S. Bailey,et al.  Mobile Robot Localisation and Mapping in Extensive Outdoor Environments , 2002 .

[59]  L. Györfi,et al.  Nonparametric entropy estimation. An overview , 1997 .

[60]  James R. Bergen,et al.  Visual odometry , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..