Homeodomain-Mediated β-Catenin-Dependent Switching Events Dictate Cell-Lineage Determination

[1]  D. Melton,et al.  β-Catenin is essential for pancreatic acinar but not islet development , 2005, Development.

[2]  Walter Birchmeier,et al.  Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. , 2005, Developmental cell.

[3]  Hee June Choi,et al.  Transcriptional regulation of a metastasis suppressor gene by Tip60 and β-catenin complexes , 2005, Nature.

[4]  M. Asashima,et al.  Maternal Wnt11 Activates the Canonical Wnt Signaling Pathway Required for Axis Formation in Xenopus Embryos , 2005, Cell.

[5]  W. Weis,et al.  β-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation , 2005, Nature Structural &Molecular Biology.

[6]  A. Means Faculty Opinions recommendation of Activating the PARP-1 sensor component of the groucho/ TLE1 corepressor complex mediates a CaMKinase IIdelta-dependent neurogenic gene activation pathway. , 2005 .

[7]  C. Glass,et al.  Activating the PARP-1 Sensor Component of the Groucho/ TLE1 Corepressor Complex Mediates a CaMKinase IIδ-Dependent Neurogenic Gene Activation Pathway , 2004, Cell.

[8]  L. Sommer,et al.  Wnt signaling and the regulation of stem cell function. , 2004, Current opinion in cell biology.

[9]  S. Camper,et al.  Pituitary hypoplasia and respiratory distress syndrome in Prop1 knockout mice. , 2004, Human molecular genetics.

[10]  R. Nusse,et al.  The Wnt signaling pathway in development and disease. , 2004, Annual review of cell and developmental biology.

[11]  R. Nusse,et al.  Convergence of Wnt, ß-Catenin, and Cadherin Pathways , 2004, Science.

[12]  S. Arber Faculty Opinions recommendation of Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. , 2004 .

[13]  U. Suter,et al.  Instructive Role of Wnt/ß-Catenin in Sensory Fate Specification in Neural Crest Stem Cells , 2004, Science.

[14]  S. Camper,et al.  WNT5A signaling affects pituitary gland shape , 2004, Mechanisms of Development.

[15]  Hans Clevers,et al.  TCF and Groucho-related genes influence pituitary growth and development. , 2003, Molecular endocrinology.

[16]  Hans Clevers,et al.  Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. , 2003, Genes & development.

[17]  Carmen Birchmeier,et al.  beta-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. , 2003, Developmental biology.

[18]  Hans Clevers,et al.  Caught up in a Wnt storm: Wnt signaling in cancer. , 2003, Biochimica et biophysica acta.

[19]  I. Weissman,et al.  A role for Wnt signalling in self-renewal of haematopoietic stem cells , 2003, Nature.

[20]  Richard W. Carthew,et al.  Chibby, a nuclear β-catenin-associated antagonist of the Wnt/Wingless pathway , 2003, Nature.

[21]  Christian Wehrle,et al.  Wnt3a plays a major role in the segmentation clock controlling somitogenesis. , 2003, Developmental cell.

[22]  U. Suter,et al.  Lineage-specific requirements of β-catenin in neural crest development , 2002, The Journal of cell biology.

[23]  Paola Briata,et al.  Identification of a Wnt/Dvl/β-Catenin → Pitx2 Pathway Mediating Cell-Type-Specific Proliferation during Development , 2002, Cell.

[24]  J. Engelhardt,et al.  Wnt-3A/β-Catenin Signaling Induces Transcription from the LEF-1 Promoter* 210 , 2002, The Journal of Biological Chemistry.

[25]  T. Kouzarides Histone methylation in transcriptional control. , 2002, Current opinion in genetics & development.

[26]  Kathleen M. Scully,et al.  Pituitary Development: Regulatory Codes in Mammalian Organogenesis , 2002, Science.

[27]  Choun-Ki Joo,et al.  Wnt/β-Catenin/Tcf Signaling Induces the Transcription of Axin2, a Negative Regulator of the Signaling Pathway , 2002, Molecular and Cellular Biology.

[28]  L. Olson,et al.  Temporal regulation of a paired-like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. , 2001, Genes & development.

[29]  H Clevers,et al.  The chromatin remodelling factor Brg‐1 interacts with β‐catenin to promote target gene activation , 2001, The EMBO journal.

[30]  E. Fuchs,et al.  Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. , 2001, Genes & development.

[31]  W. Birchmeier,et al.  β-Catenin Controls Hair Follicle Morphogenesis and Stem Cell Differentiation in the Skin , 2001, Cell.

[32]  A. McMahon,et al.  Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. , 2001, Development.

[33]  T. A. Graham,et al.  Crystal Structure of a β-Catenin/Tcf Complex , 2000, Cell.

[34]  A. Bauer,et al.  Pontin52 and Reptin52 function as antagonistic regulators of β‐catenin signalling activity , 2000, The EMBO journal.

[35]  H. Thirlwell,et al.  β-Catenin–Histone Deacetylase Interactions Regulate the Transition of LEF1 from a Transcriptional Repressor to an Activator , 2000, Molecular and Cellular Biology.

[36]  T. Akiyama,et al.  Inhibition of Wnt signaling by ICAT, a novel β-catenin-interacting protein , 2000, Genes & Development.

[37]  R. Beddington,et al.  The homeobox gene Hesx1 is required in the anterior neural ectoderm for normal forebrain formation. , 2000, Developmental biology.

[38]  Kris Vleminckx,et al.  The p300/CBP acetyltransferases function as transcriptional coactivators of β‐catenin in vertebrates , 2000, The EMBO journal.

[39]  M. Peifer,et al.  Wnt signaling in oncogenesis and embryogenesis--a look outside the nucleus. , 2000, Science.

[40]  M. Taketo,et al.  Intestinal polyposis in mice with a dominant stable mutation of the β‐catenin gene , 1999, The EMBO journal.

[41]  Walter Birchmeier,et al.  Hot papers in cell biology - J. Behrens, J.P. von Kries, M. Kuehl, L. Bruhn, D. Wedlich, R. Grosschedl, W. Birchmeier: "Functional interaction of beta-catenin with the transcription factor LEF-1" - Comments by Walter Birchmeier , 1999 .

[42]  Randall T. Moon,et al.  Control of neural crest cell fate by the Wnt signalling pathway , 1998, Nature.

[43]  Hans Clevers,et al.  Drosophila Tcf and Groucho interact to repress Wingless signalling activity , 1998, Nature.

[44]  D. Watkins-Chow,et al.  How many homeobox genes does it take to make a pituitary gland? , 1998, Trends in genetics : TIG.

[45]  A. McMahon,et al.  Multistep signaling requirements for pituitary organogenesis in vivo. , 1998, Genes & development.

[46]  R. Nusse,et al.  Wnt signaling: a common theme in animal development. , 1997, Genes & development.

[47]  H Clevers,et al.  TCF/LEF factor earn their wings. , 1997, Trends in genetics : TIG.

[48]  Hans Clevers,et al.  Armadillo Coactivates Transcription Driven by the Product of the Drosophila Segment Polarity Gene dTCF , 1997, Cell.

[49]  P. Sawchenko,et al.  The Pit-1 gene is regulated by distinct early and late pituitary-specific enhancers. , 1997, Developmental biology.

[50]  S. Camper,et al.  The Ames dwarf gene, df, is required early in pituitary ontogeny for the extinction of Rpx transcription and initiation of lineage-specific cell proliferation. , 1996, Molecular endocrinology.

[51]  Wei Wu,et al.  Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism , 1996, Nature.

[52]  Michael Kühl,et al.  Functional interaction of β-catenin with the transcription factor LEF-1 , 1996, Nature.

[53]  Hans Clevers,et al.  XTcf-3 Transcription Factor Mediates β-Catenin-Induced Axis Formation in Xenopus Embryos , 1996, Cell.

[54]  E. Fuchs,et al.  Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. , 1995, Genes & development.

[55]  I Fariñas,et al.  Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. , 1994, Genes & development.

[56]  S. Rhodes,et al.  A tissue-specific enhancer confers Pit-1-dependent morphogen inducibility and autoregulation on the pit-1 gene. , 1993, Genes & development.

[57]  M. Karin,et al.  GHF-1-promoter-targeted immortalization of a somatotropic progenitor cell results in dwarfism in transgenic mice. , 1993, Genes & development.

[58]  Larry W. Swanson,et al.  Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1 , 1990, Nature.

[59]  L W Swanson,et al.  Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. , 1990, Genes & development.

[60]  C. Glass,et al.  The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements , 1988, Cell.

[61]  R. Nusse,et al.  Convergence of Wnt, beta-catenin, and cadherin pathways. , 2004, Science.

[62]  Lin Chang-min,et al.  Beta-catenin controls hair follicle morphogenesis and stem cell differentiation , 2004 .

[63]  R. Moon,et al.  Chibby, a nuclear beta-catenin-associated antagonist of the Wnt/Wingless pathway. , 2003, Nature.

[64]  Hans Clevers,et al.  The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. , 2002, Cell.

[65]  M. Rosenfeld,et al.  Signaling and transcriptional mechanisms in pituitary development. , 2001, Annual review of neuroscience.

[66]  T. Akiyama,et al.  Inhibition of Wnt signaling by ICAT, a novel beta-catenin-interacting protein. , 2000, Genes & development.

[67]  T. A. Graham,et al.  Crystal structure of a beta-catenin/Tcf complex. , 2000, Cell.

[68]  Philippe Soriano Generalized lacZ expression with the ROSA26 Cre reporter strain , 1999, Nature Genetics.

[69]  S. Mackem,et al.  Rpx: a novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke's pouch of the mouse embryo. , 1996, Development.

[70]  R Grosschedl,et al.  Functional interaction of beta-catenin with the transcription factor LEF-1. , 1996, Nature.