Translational homeostasis via the mRNA cap-binding protein, eIF4E.

[1]  N. Sonenberg,et al.  mTORC1-Mediated Cell Proliferation, But Not Cell Growth, Controlled by the 4E-BPs , 2010, Science.

[2]  C. Chresta,et al.  Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR) , 2009, The Biochemical journal.

[3]  Robbie Loewith,et al.  Active-Site Inhibitors of mTOR Target Rapamycin-Resistant Outputs of mTORC1 and mTORC2 , 2009, PLoS biology.

[4]  A. Gingras,et al.  Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs. , 2008, RNA.

[5]  J. Graff,et al.  Targeting the eukaryotic translation initiation factor 4E for cancer therapy. , 2008, Cancer research.

[6]  M. Clemens,et al.  Effects of protein phosphorylation on ubiquitination and stability of the translational inhibitor protein 4E-BP1 , 2008, Oncogene.

[7]  H. Yee,et al.  A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. , 2007, Molecular cell.

[8]  Tao Wang,et al.  Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. , 2007, The Journal of clinical investigation.

[9]  T. Tuschl,et al.  On the art of identifying effective and specific siRNAs , 2006, Nature Methods.

[10]  Robert R. Klein,et al.  Expression of mTOR signaling pathway markers in prostate cancer progression , 2006, The Prostate.

[11]  K. Shimotohno,et al.  Ubiquitination and Proteasome-dependent Degradation of Human Eukaryotic Translation Initiation Factor 4E* , 2006, Journal of Biological Chemistry.

[12]  Kalle Gehring,et al.  Poly(A) binding protein (PABP) homeostasis is mediated by the stability of its inhibitor, Paip2 , 2006, The EMBO journal.

[13]  G. Wagner,et al.  Ribosome Loading onto the mRNA Cap Is Driven by Conformational Coupling between eIF4G and eIF4E , 2003, Cell.

[14]  Steven P Gygi,et al.  A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Y. Xiong,et al.  Targeting of protein ubiquitination by BTB–Cullin 3–Roc1 ubiquitin ligases , 2003, Nature Cell Biology.

[16]  S. Elledge,et al.  BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3 , 2003, Nature.

[17]  M. Tyers,et al.  The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase , 2003, Nature.

[18]  J. Yates,et al.  BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. , 2003, Molecular cell.

[19]  S K Burley,et al.  Hierarchical phosphorylation of the translation inhibitor 4E-BP1. , 2001, Genes & development.

[20]  B. Spiegelman,et al.  Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1 , 2001, Nature Medicine.

[21]  N. Sonenberg,et al.  eIF4E association with 4E-BP decreases rapidly following fertilization in sea urchin. , 2001, Developmental biology.

[22]  A. Gingras,et al.  Regulation of translation initiation by FRAP/mTOR. , 2001, Genes & development.

[23]  G. Dittmar,et al.  Cell Cycle–Regulated Modification of the Ribosome by a Variant Multiubiquitin Chain , 2000, Cell.

[24]  J. Fando,et al.  4E binding protein 1 expression is inversely correlated to the progression of gastrointestinal cancers. , 2000, The international journal of biochemistry & cell biology.

[25]  A. Gingras,et al.  eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. , 1999, Annual review of biochemistry.

[26]  A. Gingras,et al.  Translational Homeostasis: Eukaryotic Translation Initiation Factor 4E Control of 4E-Binding Protein 1 and p70 S6 Kinase Activities , 1999, Molecular and Cellular Biology.

[27]  A. Gingras,et al.  4E-BP3, a New Member of the Eukaryotic Initiation Factor 4E-binding Protein Family* , 1998, The Journal of Biological Chemistry.

[28]  A. Gingras,et al.  4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. , 1998, Genes & development.

[29]  N. Sonenberg,et al.  Alternatively Spliced Transcripts from the Drosophila eIF4E Gene Produce Two Different Cap-binding Proteins* , 1996, The Journal of Biological Chemistry.

[30]  The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. , 1995, Molecular and cellular biology.

[31]  P. Blackshear,et al.  Control of PHAS-I by Insulin in 3T3-L1 Adipocytes , 1995, The Journal of Biological Chemistry.

[32]  A. Gingras,et al.  Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function , 1994, Nature.

[33]  G. Nolan,et al.  Production of high-titer helper-free retroviruses by transient transfection. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[34]  N. Sonenberg,et al.  Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5' cap , 1990, Nature.

[35]  J. Hershey,et al.  Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control. Heat shock effects on eIF-4F. , 1987, The Journal of biological chemistry.

[36]  R. Rhoads,et al.  Immunological detection of the messenger RNA cap-binding protein. , 1985, The Journal of biological chemistry.