Design of a Compliant Flexure Joint for Use in a Flow Energy Harvester

This paper presents an initial experimental and computational investigation of a flow-induced vibration energy harvester with a compliant flexure mechanism. This energy harvester utilizes the aeroelastic flutter phenomenon to convert the flow energy to vibrational energy which can be converted into useful electrical power using piezoelectric transducers. However, unlike previous flutter-based flow energy harvesters [1] which require assembling multiple components to create the necessary aeroelastic arrangement, the device described here utilizes a monolithic, compact design to achieve the same. In this paper, we propose a flexure design for this device and model it using analytic methods and finite element simulations. A proof of concept energy harvester incorporating this flexure design has been fabricated and experimentally investigated in wind tunnel testing.Copyright © 2014 by ASME