Nonparametric and Distribution-Free Estimation of the Binary Threshold Crossing and the Binary Choice Models

The author shows that it is possible to identify binary threshold crossing models and binary choice models without imposing any parametric structure either on the systematic function of observable exogenous variables or on the distribution of the random term. This identification result is employed to develop a fully nonparametric maximum likelihood estimator for both the function of observable exogenous variables and the distribution of the random term. The estimator is shown to be strongly consistent and a two step procedure for its calculation is developed. The paper also includes examples of economic models that satisfy the conditions necessary to apply the results. Copyright 1992 by The Econometric Society.

[1]  A. Wald Note on the Consistency of the Maximum Likelihood Estimate , 1949 .

[2]  H. D. Brunk,et al.  AN EMPIRICAL DISTRIBUTION FUNCTION FOR SAMPLING WITH INCOMPLETE INFORMATION , 1955 .

[3]  J. Kiefer,et al.  CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN THE PRESENCE OF INFINITELY MANY INCIDENTAL PARAMETERS , 1956 .

[4]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[5]  E. Nadaraya On Non-Parametric Estimates of Density Functions and Regression Curves , 1965 .

[6]  David R. Cox The analysis of binary data , 1970 .

[7]  S. Afriat,et al.  The Theory of International Comparisons of Real Income and Prices , 1972 .

[8]  C. Manski MAXIMUM SCORE ESTIMATION OF THE STOCHASTIC UTILITY MODEL OF CHOICE , 1975 .

[9]  D. J. Strauss,et al.  Some results on random utility models , 1979 .

[10]  P. Billingsley,et al.  Probability and Measure , 1980 .

[11]  A. Gallant,et al.  On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form , 1981 .

[12]  A. Gallant,et al.  Unbiased determination of production technologies , 1982 .

[13]  Prakasa Rao Nonparametric functional estimation , 1983 .

[14]  S. Cosslett DISTRIBUTION-FREE MAXIMUM LIKELIHOOD ESTIMATOR OF THE BINARY CHOICE MODEL1 , 1983 .

[15]  P. Schmidt,et al.  Limited-Dependent and Qualitative Variables in Econometrics. , 1984 .

[16]  C. Manski Semiparametric analysis of discrete response: Asymptotic properties of the maximum score estimator , 1985 .

[17]  Patrick Billingsley,et al.  Probability and Measure. , 1986 .

[18]  H. Ichimura Estimation of single index models , 1987 .

[19]  Semiparametric Estimation of Monotonic and Concave Utility Functions: The Discrete Choice Case , 1987 .

[20]  C. Manski Identification of Binary Response Models , 1988 .

[21]  李幼升,et al.  Ph , 1989 .

[22]  Rosa L. Matzkin A Nonparametric Maximum Rank Correlation Estimator , 1989 .

[23]  Least Concavity and the Distribution-Free Estimation of Non-Parametric Concave Functions , 1990 .

[24]  Estimation of Multinomial Models Using Weak Monotonicity Assumptions , 1990 .

[25]  Rosa L. Matzkin Semiparametric Estimation of Monotone and Concave Utility Functions for Polychotomous Choice Models , 1991 .