Stochastic Switching of Cell Fate in Microbes.

Microbes transiently differentiate into distinct, specialized cell types to generate functional diversity and cope with changing environmental conditions. Though alternate programs often entail radically different physiological and morphological states, recent single-cell studies have revealed that these crucial decisions are often left to chance. In these cases, the underlying genetic circuits leverage the intrinsic stochasticity of intracellular chemistry to drive transition between states. Understanding how these circuits transform transient gene expression fluctuations into lasting phenotypic programs will require a combination of quantitative modeling and extensive, time-resolved observation of switching events in single cells. In this article, we survey microbial cell fate decisions demonstrated to involve a random element, describe theoretical frameworks for understanding stochastic switching between states, and highlight recent advances in microfluidics that will enable characterization of key dynamic features of these circuits.

[1]  J. Ferrell Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. , 2002, Current opinion in cell biology.

[2]  J. Pitchford,et al.  Exact Results for the Evolution of Stochastic Switching in Variable Asymmetric Environments , 2010, Genetics.

[3]  N. Wingreen,et al.  Exponential sensitivity of noise-driven switching in genetic networks , 2007, Physical biology.

[4]  Felix J. H. Hol,et al.  Zooming in to see the bigger picture: Microfluidic and nanofabrication tools to study bacteria , 2014, Science.

[5]  Rosalind J Allen,et al.  Statistical physics of a model binary genetic switch with linear feedback. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Tsz-Leung To,et al.  Noise Can Induce Bimodality in Positive Transcriptional Feedback Loops Without Bistability , 2010, Science.

[7]  Ertugrul M. Ozbudak,et al.  Regulation of noise in the expression of a single gene , 2002, Nature Genetics.

[8]  Ofer Biham,et al.  Genetic toggle switch without cooperative binding. , 2006, Physical review letters.

[9]  Alexander D. Johnson,et al.  White-opaque switching in Candida albicans. , 2009, Current opinion in microbiology.

[10]  R. Losick,et al.  Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility , 2004, Molecular microbiology.

[11]  L. You,et al.  Emergent bistability by a growth-modulating positive feedback circuit. , 2009, Nature chemical biology.

[12]  A. Novick,et al.  ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M. Delbrück Statistical Fluctuations in Autocatalytic Reactions , 1940 .

[14]  S. Quake,et al.  Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth , 2007, Proceedings of the National Academy of Sciences.

[15]  Johan Paulsson,et al.  Random partitioning of molecules at cell division , 2011, Proceedings of the National Academy of Sciences.

[16]  Shankar Mukherji,et al.  Robust Circadian Oscillations in Growing Cyanobacteria Require Transcriptional Feedback , 2013, Science.

[17]  J. Bigger TREATMENT OF STAPHYLOCOCCAL INFECTIONS WITH PENICILLIN BY INTERMITTENT STERILISATION , 1944 .

[18]  Esteban O. Mazzoni,et al.  The Growth Regulators warts/lats and melted Interact in a Bistable Loop to Specify Opposite Fates in Drosophila R8 Photoreceptors , 2005, Cell.

[19]  Esteban O. Mazzoni,et al.  Stochastic spineless expression creates the retinal mosaic for colour vision , 2006, Nature.

[20]  K. Lewis Persister cells, dormancy and infectious disease , 2007, Nature Reviews Microbiology.

[21]  Anders S Hansen,et al.  Promoter decoding of transcription factor dynamics involves a trade-off between noise and control of gene expression , 2013 .

[22]  Richard Moxon,et al.  Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. , 2006, Annual review of genetics.

[23]  Gürol M. Süel,et al.  Temporal competition between differentiation programs determines cell fate choice , 2011, Molecular systems biology.

[24]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[25]  P. R. ten Wolde,et al.  Enhancement of the stability of genetic switches by overlapping upstream regulatory domains. , 2003, Physical review letters.

[26]  M. Simon,et al.  Phase variation: Genetic analysis of switching mutants , 1980, Cell.

[27]  Kirsten L. Frieda,et al.  A Stochastic Single-Molecule Event Triggers Phenotype Switching of a Bacterial Cell , 2008, Science.

[28]  J. Paulsson,et al.  Effects of Molecular Memory and Bursting on Fluctuations in Gene Expression , 2008, Science.

[29]  M. Bell,et al.  Two types of Drosophila R7 photoreceptor cells are arranged randomly: A model for stochastic cell‐fate determination , 2007, The Journal of comparative neurology.

[30]  J. Errington Regulation of endospore formation in Bacillus subtilis , 2003, Nature Reviews Microbiology.

[31]  Oleg A Igoshin,et al.  Transient heterogeneity in extracellular protease production by Bacillus subtilis , 2008, Molecular systems biology.

[32]  B. Meerson,et al.  Switching between phenotypes and population extinction. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Hana El-Samad,et al.  Cellular noise regulons underlie fluctuations in Saccharomyces cerevisiae. , 2012, Molecular cell.

[34]  P. Cluzel,et al.  The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities. , 2012, Lab on a chip.

[35]  P. Swain,et al.  Gene Regulation at the Single-Cell Level , 2005, Science.

[36]  S. Leibler,et al.  Bacterial Persistence as a Phenotypic Switch , 2004, Science.

[37]  D. J. Kiviet,et al.  Stochasticity of metabolism and growth at the single-cell level , 2014, Nature.

[38]  P. R. ten Wolde,et al.  Chemical models of genetic toggle switches. , 2004, The journal of physical chemistry. B.

[39]  E. Cox,et al.  Real-Time Kinetics of Gene Activity in Individual Bacteria , 2005, Cell.

[40]  E. O’Shea,et al.  Noise in protein expression scales with natural protein abundance , 2006, Nature Genetics.

[41]  Ivan Razinkov,et al.  High-throughput gene expression analysis at the level of single proteins using a microfluidic turbidostat and automated cell tracking , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[42]  Thomas M. Norman,et al.  Memory and Modularity in Cell-Fate Decision Making , 2013, Nature.

[43]  Jordi Garcia-Ojalvo,et al.  Gene circuit designs for noisy excitable dynamics. , 2011, Mathematical biosciences.

[44]  J. Elf,et al.  Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell , 2007, Science.

[45]  A. van Oudenaarden,et al.  Noise Propagation in Gene Networks , 2005, Science.

[46]  G. Oldroyd Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants , 2013, Nature Reviews Microbiology.

[47]  Paul J. Choi,et al.  Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells , 2010, Science.

[48]  C. Desplan,et al.  Stochastic mechanisms of cell fate specification that yield random or robust outcomes. , 2010, Annual review of cell and developmental biology.

[49]  Thomas M. Norman,et al.  An epigenetic switch governing daughter cell separation in Bacillus subtilis. , 2010, Genes & development.

[50]  R. Losick,et al.  Cell population heterogeneity during growth of Bacillus subtilis. , 2005, Genes & development.

[51]  B. Tuch,et al.  Interlocking Transcriptional Feedback Loops Control White-Opaque Switching in Candida albicans , 2007, PLoS biology.

[52]  Linda B. Buck,et al.  A zonal organization of odorant receptor gene expression in the olfactory epithelium , 1993, Cell.

[53]  G. Whitesides,et al.  Microfabrication meets microbiology , 2007, Nature Reviews Microbiology.

[54]  R. Singer,et al.  Transcriptional Pulsing of a Developmental Gene , 2006, Current Biology.

[55]  Eduardo Sontag,et al.  Untangling the wires: A strategy to trace functional interactions in signaling and gene networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[56]  S. Majumdar,et al.  Switching and growth for microbial populations in catastrophic responsive environments. , 2009, Biophysical journal.

[57]  Eleftherios T. Papoutsakis,et al.  A comparative genomic view of clostridial sporulation and physiology , 2005, Nature Reviews Microbiology.

[58]  Rajan P Kulkarni,et al.  Tunability and Noise Dependence in Differentiation Dynamics , 2007, Science.

[59]  Andrew Wright,et al.  Robust Growth of Escherichia coli , 2010, Current Biology.

[60]  Guanghua Huang,et al.  Bistable expression of WOR1, a master regulator of white–opaque switching in Candida albicans , 2006, Proceedings of the National Academy of Sciences.

[61]  K. Turner,et al.  Epigenetic Control of Virulence Gene Expression in Pseudomonas aeruginosa by a LysR-Type Transcription Regulator , 2009, PLoS genetics.

[62]  R. Milo,et al.  Variability and memory of protein levels in human cells , 2006, Nature.

[63]  I. Henderson,et al.  Molecular switches — the ON and OFF of bacterial phase variation , 1999, Molecular microbiology.

[64]  K. Turner,et al.  An Epigenetic Switch Mediates Bistable Expression of the Type 1 Pilus Genes in Streptococcus pneumoniae , 2011, Journal of bacteriology.

[65]  T. Kepler,et al.  Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. , 2001, Biophysical journal.

[66]  F R Adler,et al.  How to make a biological switch. , 2000, Journal of theoretical biology.

[67]  Glenn Vinnicombe,et al.  Noise in Gene Regulatory Networks , 2008, IEEE Transactions on Automatic Control.

[68]  Mehmet Toner,et al.  Asymmetry and Aging of Mycobacterial Cells Lead to Variable Growth and Antibiotic Susceptibility , 2012, Science.

[69]  M. E. Palmer,et al.  Broad Conditions Favor the Evolution of Phase-Variable Loci , 2013, mBio.

[70]  Johan Paulsson,et al.  Models of stochastic gene expression , 2005 .

[71]  Oscar P. Kuipers,et al.  Phenotypic variation in bacteria: the role of feedback regulation , 2006, Nature Reviews Microbiology.

[72]  N. Balaban Szilard's dream , 2005, Nature Methods.

[73]  Guy S. Salvesen,et al.  SnapShot: Caspases , 2011, Cell.

[74]  J. Casadesús,et al.  Clocks and switches: bacterial gene regulation by DNA adenine methylation. , 2008, Current opinion in microbiology.

[75]  Johan Paulsson,et al.  Non-genetic heterogeneity from stochastic partitioning at cell division , 2011, Nature Genetics.

[76]  D. Dubnau,et al.  Noise in Gene Expression Determines Cell Fate in Bacillus subtilis , 2007, Science.

[77]  O. Berg A model for the statistical fluctuations of protein numbers in a microbial population. , 1978, Journal of theoretical biology.

[78]  D R Rigney,et al.  Stochastic model of constitutive protein levels in growing and dividing bacterial cells. , 1979, Journal of theoretical biology.

[79]  J. Peccoud,et al.  Markovian Modeling of Gene-Product Synthesis , 1995 .

[80]  P. Swain,et al.  Intrinsic and extrinsic contributions to stochasticity in gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[81]  J. Derisi,et al.  Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise , 2006, Nature.

[82]  Lucy Shapiro,et al.  Systems biology of Caulobacter. , 2007, Annual review of genetics.

[83]  D R Rigney,et al.  Note on the kinetics and stochastics of induced protein synthesis as influenced by various models for messenger RNA degradation. , 1979, Journal of theoretical biology.

[84]  Jerome T. Mettetal,et al.  Stochastic switching as a survival strategy in fluctuating environments , 2008, Nature Genetics.

[85]  L. Marcello,et al.  Antigenic variation in the African trypanosome: molecular mechanisms and phenotypic complexity , 2009, Cellular microbiology.

[86]  J. Raser,et al.  Control of Stochasticity in Eukaryotic Gene Expression , 2004, Science.

[87]  P. T. Magee,et al.  Opaque-white phenotype transition: a programmed morphological transition in Candida albicans , 1988, Journal of bacteriology.

[88]  Stephen R Quake,et al.  Optofluidic cell selection from complex microbial communities for single-genome analysis. , 2013, Methods in enzymology.

[89]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[90]  Eric Libby,et al.  Exclusion rules, bottlenecks and the evolution of stochastic phenotype switching , 2011, Proceedings of the Royal Society B: Biological Sciences.

[91]  J. Vilar,et al.  From molecular noise to behavioural variability in a single bacterium , 2004, Nature.

[92]  Philippe Cluzel,et al.  Noise underlies switching behavior of the bacterial flagellum. , 2011, Biophysical journal.

[93]  M. Gravenor,et al.  Mutation rates: estimating phase variation rates when fitness differences are present and their impact on population structure. , 2003, Microbiology.

[94]  M. Elowitz,et al.  Regulatory activity revealed by dynamic correlations in gene expression noise , 2008, Nature Genetics.

[95]  Claude Desplan,et al.  Stochasticity and Cell Fate , 2008, Science.

[96]  Megan N. McClean,et al.  Signal processing by the HOG MAP kinase pathway , 2008, Proceedings of the National Academy of Sciences.

[97]  J. García-Ojalvo,et al.  Effects of noise in excitable systems , 2004 .

[98]  J. Paulsson Summing up the noise in gene networks , 2004, Nature.

[99]  M. Tabaka,et al.  Bimodal gene expression in noncooperative regulatory systems , 2010, Proceedings of the National Academy of Sciences.

[100]  Gürol M. Süel,et al.  An excitable gene regulatory circuit induces transient cellular differentiation , 2006, Nature.

[101]  M. L. Simpson,et al.  Gene network shaping of inherent noise spectra , 2006, Nature.

[102]  Kevin D Dorfman,et al.  Microfluidic chemostat for measuring single cell dynamics in bacteria. , 2013, Lab on a chip.

[103]  Johan Elf,et al.  The lac Repressor Displays Facilitated Diffusion in Living Cells , 2012, Science.

[104]  Sasha F. Levy,et al.  Bet Hedging in Yeast by Heterogeneous, Age-Correlated Expression of a Stress Protectant , 2012, PLoS biology.

[105]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[106]  Roland R. Regoes,et al.  Stabilization of cooperative virulence by the expression of an avirulent phenotype , 2013, Nature.

[107]  Jean-Pierre Claverys,et al.  Cannibalism and fratricide: mechanisms and raisons d'être , 2007, Nature Reviews Microbiology.

[108]  J. W. Little,et al.  Stability and Instability in the Lysogenic State of Phage Lambda , 2010, Journal of bacteriology.

[109]  S. Leibler,et al.  Phenotypic Diversity, Population Growth, and Information in Fluctuating Environments , 2005, Science.

[110]  G. Schoolnik,et al.  A Bistable Switch and Anatomical Site Control Vibrio cholerae Virulence Gene Expression in the Intestine , 2010, PLoS pathogens.

[111]  Paul J. Choi,et al.  Stochastic switching in gene networks can occur by a single-molecule event or many molecular steps. , 2010, Journal of molecular biology.

[112]  M. W. Woude Phase variation: how to create and coordinate population diversity , 2011 .

[113]  Han N. Lim,et al.  A multistep epigenetic switch enables the stable inheritance of DNA methylation states , 2007, Nature Genetics.

[114]  Patsy Haccou,et al.  Bet hedging or not? A guide to proper classification of microbial survival strategies , 2011, BioEssays : news and reviews in molecular, cellular and developmental biology.

[115]  H. J. Beaumont,et al.  Experimental evolution of bet hedging , 2009, Nature.

[116]  Richard Axel,et al.  Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium , 1993, Cell.

[117]  D. Tranchina,et al.  Stochastic mRNA Synthesis in Mammalian Cells , 2006, PLoS biology.