Thermodynamically valid noise models for nonlinear devices

Noise has been a concern from the very beginning of signal processing and electrical engineering in general, although it was perhaps of less interest until vacuum-tube amplifiers made it audible just after 1900. Rigorous noise models for linear resistors were developed in 1927 by Nyquist and Johnson [1, 2]. However, the intervening years have not brought similarly well-established models for noise in nonlinear devices. This thesis proposes using thermodynamic principles to determine whether a given nonlinear device noise model is physically valid. These tests are applied to several models. One conclusion is that the standard Gaussian noise models for nonlinear devices predict thermodynamically impossible circuit behavior: these models should be abandoned. But the nonlinear shot-noise model predicts thermodynamically acceptable behavior under a constraint derived here. This thesis shows how the thermodynamic requirements can be reduced to concise mathematical tests, involving no approximations, for the Gaussian and shot-noise models. When the above-mentioned constraint is satisfied, the nonlinear shot-noise model specifies the current noise amplitude at each operating point from knowledge of the device v− i curve alone. This relation between the dissipative behavior and the noise fluctuations is called, naturally enough, a fluctuation-dissipation relation. This thesis further investigates such FDRs, including one for linear resistors in nonlinear circuits that was previously unexplored. The aim of this thesis is to provide thermodynamically solid foundations for noise models. It is hoped that hypothesized noise models developed to match experiment will be validated against the concise mathematical tests of this thesis. Finding a correct noise model will help circuit designers and physicists understand the actual processes causing the noise, and perhaps help them minimize the noise or its effect in the circuit. Thesis Supervisor: John L. Wyatt, Jr. Title: Professor of Electrical Engineering and Computer Science

[1]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[2]  G. J. Coram,et al.  Nonlinear device noise models: Satisfying the thermodynamic requirements , 1999 .

[3]  Colin Cherry M.Sc. A.M.I.E.E. CXVII. Some general theorems for non-linear systems possessing reactance , 1951 .

[4]  Richard F. Greene,et al.  On a Theorem of Irreversible Thermodynamics , 1952 .

[5]  Thermodynamics and the Manley—Rowe Equations , 1966 .

[6]  Mark H. A. Davis Linear estimation and stochastic control , 1977 .

[7]  W. Mathis,et al.  A thermodynamic noise model for nonlinear resistors , 1999, IEEE Electron Device Letters.

[8]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[9]  John L. Wyatt,et al.  Poisson models for noisy nonlinear devices , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[10]  E. Wong,et al.  Stochastic Processes in Engineering Systems , 1984 .

[11]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[12]  The Langevin equation and a more general approach to internal noise in nonlinear networks , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[13]  J. Goette The capacitor-voltage variance matrix of passive thermal-noisy RC networks , 1990 .

[14]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[16]  J. Wyatt,et al.  Thermodynamics of electrical noise in a class of nonlinear RLC networks , 1985 .

[17]  D. A. Wilbur Thermal Agitation of Electricity in Conductors. , 1932 .

[18]  Weibo Gong,et al.  Stochastic analysis for fluid queueing systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[19]  Derek Abbott,et al.  Simple derivation of the thermal noise formula using window-limited Fourier transforms and other conundrums , 1996 .

[20]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  E. J. McShane Stochastic Calculus and Stochastic Models , 1974 .

[22]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .

[23]  E J McShane Toward a stochastic calculus, ii. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Hermann A. Haus Steady-state quantum analysis of linear systems , 1970 .

[25]  J. Wyatt,et al.  A frequency- domain inequality for stochastic power flow in linear networks , 1984 .

[26]  Richard E. Mortensen,et al.  Mathematical problems of modeling stochastic nonlinear dynamic systems , 1969 .

[27]  J. K. Moser,et al.  A theory of nonlinear networks. I , 1964 .

[28]  The Statistical Method of Gibbs in Irreversible Change , 1950 .

[29]  H. L. Dryden,et al.  Investigations on the Theory of the Brownian Movement , 1957 .

[30]  Nonlinear Device Noise Models : Thermodynamic , 1997 .

[31]  A. van der Ziel,et al.  Noise in solid-state devices and lasers , 1970 .

[32]  R. Landauer,et al.  Solid-state shot noise. , 1993, Physical review. B, Condensed matter.

[33]  N. G. van Kampen,et al.  Itô versus Stratonovich , 1981 .

[34]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[35]  R. Twiss,et al.  Nyquist's and Thevenin's Theorems Generalized for Nonreciprocal Linear Networks , 1955 .

[36]  Wolfgang Mathis,et al.  A thermodynamical approach to noise in non-linear networks , 1998 .

[37]  J.S. Harris,et al.  Excess Noise in Sub-micron Silicon FET: Characterization, Prediction and Control , 1999, 29th European Solid-State Device Research Conference.

[38]  A. Ziel Nyquist's theorem for non-linear resistors☆ , 1973 .

[39]  P. Varaiya,et al.  Martingales on Jump Processes. II: Applications , 1975 .

[40]  P. Varaiya,et al.  Martingales on Jump Processes. I: Representation Results , 1975 .

[41]  Toward a stochastic calculus, I. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[42]  A. van der Ziel,et al.  Thermal Noise in Field-Effect Transistors , 1962 .

[43]  V. Borkar Probability Theory: An Advanced Course , 1995 .

[44]  R. T. Cox Brownian Motion in the Theory of Irreversible Processes , 1952 .

[45]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[46]  Leon O. Chua,et al.  A theory of algebraic n-ports , 1973 .

[47]  R. Fürth On the theory of electrical fluctuations , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[48]  R. L. Stratonovich Thermal noise in nonlinear resistors , 1970 .

[49]  John L. Wyatt,et al.  Poisson and Gaussian models for noisy devices , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[50]  R. L. Stratonovich A New Representation for Stochastic Integrals and Equations , 1966 .

[51]  Thermodynamic validity of noise models for nonlinear resistive devices , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[52]  W. Millar CXVI. Some general theorems for non-linear systems possessing resistance , 1951 .

[53]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[54]  Brian D. O. Anderson,et al.  Analysis and synthesis of nonlinear reciprocal networks containing two element types and transformers , 1980 .

[55]  W. Mathis,et al.  A Hamiltonian formulation for complete nonlinear RLC-networks , 1997 .

[56]  R. Brockett,et al.  Estimation, information and neural signals , 1998 .

[57]  J. Doob Stochastic processes , 1953 .

[58]  L. Trajković,et al.  A generalization of Brayton-Moser's mixed potential function , 1998 .

[59]  A. Cappy,et al.  Noise modeling and measurement techniques (HEMTs) , 1988 .

[60]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[61]  Eugene Wong,et al.  Notes for a first course on linear systems , 1970 .

[62]  E. Wong,et al.  ON THE RELATION BETWEEN ORDINARY AND STOCHASTIC DIFFERENTIAL EQUATIONS , 1965 .

[63]  A. van der Ziel,et al.  Noise in Solid State Devices , 1978 .

[64]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[65]  Brian D. O. Anderson,et al.  Nonlinear networks and Onsager-Casimir reversibility , 1980 .

[66]  Brian D. O. Anderson,et al.  Thermal Noise Behavior of the Bridge Circuit , 2000 .

[67]  Madhu S. Gupta Thermal fluctuations in driven nonlinear resistive systems , 1978 .

[68]  Paul E. Pfeiffer Probability for Applications , 1989 .

[69]  E. Wong,et al.  On the Convergence of Ordinary Integrals to Stochastic Integrals , 1965 .

[70]  C. Mead,et al.  White noise in MOS transistors and resistors , 1993, IEEE Circuits and Devices Magazine.

[71]  R. L. Stratonovich,et al.  Nonlinear Nonequilibrium Thermodynamics II , 1992 .

[72]  M. .. Moore Statistical Mechanics: A Set of Lectures , 1974 .

[73]  K. K. Thornber,et al.  Theory of noise in charge-transfer devices , 1974 .

[74]  J. Gunn,et al.  Thermodynamics of Nonlinearity and Noise in Diodes , 1968 .

[75]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[76]  John L. Wyatt,et al.  Nonlinear Device Noise Models:Thermodynamic Requirements , 1997 .

[77]  Gerhard K. M. Wachutka,et al.  Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[78]  J. Willems,et al.  Stochastic control and the second law of thermodynamics , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[79]  M.S. Gupta,et al.  Thermal noise in nonlinear resistive devices and its circuit representation , 1982, Proceedings of the IEEE.

[80]  Ofer Zeitouni,et al.  Microcanonical Distributions, Gibbs States, and the Equivalence of Ensembles , 1991 .

[81]  N. Kampen,et al.  Thermal Fluctuations in Nonlinear Systems , 1963 .

[82]  L. Brillouin,et al.  Can the Rectifier Become a Thermodynamical Demon , 1950 .

[83]  W. Mathis,et al.  N-port reciprocity and irreversible thermodynamics , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[84]  John L. Wyatt,et al.  Thermal noise behavior of a nonlinear bridge circuit , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[85]  Zeev Schuss,et al.  Theory and Applications of Stochastic Differential Equations , 1980 .

[86]  J. McFadden The Entropy of a Point Process , 1965 .

[87]  Wolfgang Mathis,et al.  Noise equivalent circuit for nonlinear resistors , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[88]  Can E. Korman,et al.  A physics-based semiconductor noise model suitable for efficient numerical implementation , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[89]  Paul Horowitz,et al.  The Art of Electronics , 1980 .