The size of the jet launching region in M87

The supermassive black hole candidate at the centre of M87 drives an ultra-relativistic jet visible on kiloparsec scales, and its large mass and relative proximity allow for event horizon scale imaging with very long baseline interferometry at millimetre wavelengths (mm-VLBI). Recently, relativistic magnetohydrodynamic simulations of black hole accretion flows have proven capable of launching magnetically dominated jets. We construct time-dependent disc/jet models of the innermost portion of the M87 nucleus by performing relativistic radiative transfer calculations from one such simulation. We identify two types of models, jet-dominated or disc/jet, that can explain the spectral properties of M87, and use them to make predictions for current and future mm-VLBI observations. The Gaussian source size for the favoured sky orientation and inclination from observations of the large-scale jet is as (≃4–6 Schwarzschild radii) on current mm-VLBI telescopes, very similar to existing observations of Sgr A*. The black hole shadow, direct evidence for an event horizon, should be visible in future measurements using baselines between Hawaii and Mexico. Both models exhibit variability at millimetre wavelengths with factor of ≃2 amplitudes on year time-scales. For the low inclination of M87, the counter-jet dominates the event horizon scale millimetre wavelength emission from the jet-forming region.

[1]  Jonathan C. McKinney,et al.  WHAM : a WENO-based general relativistic numerical scheme -I. Hydrodynamics , 2007, 0704.2608.

[2]  K. C. Westfold,et al.  The Polarization of Synchrotron Radiation. , 1959 .

[3]  General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[4]  William Junor,et al.  A VLBA movie of the jet launch region in M87 , 2008 .

[5]  MAGNETICALLY DRIVEN ACCRETION IN THE KERR METRIC. III. UNBOUND OUTFLOWS , 2004, astro-ph/0407092.

[6]  P. K. Leung,et al.  RADIATIVE MODELS OF SGR A* FROM GRMHD SIMULATIONS , 2009, 0909.5431.

[7]  C. Gammie,et al.  Primitive Variable Solvers for Conservative General Relativistic Magnetohydrodynamics , 2005, astro-ph/0512420.

[8]  Ramesh Narayan,et al.  Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A* , 2003, astro-ph/0304125.

[9]  A. Loeb,et al.  IMAGING THE BLACK HOLE SILHOUETTE OF M87: IMPLICATIONS FOR JET FORMATION AND BLACK HOLE SPIN , 2008, 0812.0366.

[10]  William B. Sparks,et al.  The Jet of M87 at Tenth-Arcsecond Resolution: Optical, Ultraviolet, and Radio Observations , 1996 .

[11]  M. Wright,et al.  1.3 mm WAVELENGTH VLBI OF SAGITTARIUS A*: DETECTION OF TIME-VARIABLE EMISSION ON EVENT HORIZON SCALES , 2010, 1011.2472.

[12]  Tod R. Lauer,et al.  THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS , 2011, 1101.1954.

[13]  P. Chris Fragile,et al.  THE SUBMILLIMETER BUMP IN Sgr A* FROM RELATIVISTIC MHD SIMULATIONS , 2010, 1005.4062.

[14]  Radiative transfer along rays in curved space–times , 2005, astro-ph/0511515.

[15]  A compact radio source in the nucleus of M87 , 1986, Nature.

[16]  Eric Agol,et al.  A FAST NEW PUBLIC CODE FOR COMPUTING PHOTON ORBITS IN A KERR SPACETIME , 2009, 0903.0620.

[17]  J. McKinney General relativistic force-free electrodynamics: a new code and applications to black hole magnetospheres , 2006, astro-ph/0601410.

[18]  R. Walker,et al.  An Attempt to Probe the Radio Jet Collimation Regions in NGC 4278, NGC 4374 (M84), and NGC 6166 , 2003, astro-ph/0309743.

[19]  C. Gammie,et al.  NUMERICAL CALCULATION OF MAGNETOBREMSSTRAHLUNG EMISSION AND ABSORPTION COEFFICIENTS , 2011 .

[20]  W. Sparks,et al.  Is there really a supermassive black hole in M87 , 1997, astro-ph/9706246.

[21]  Re'em Sari,et al.  On the Synchrotron Self-Compton Emission from Relativistic Shocks and Its Implications for Gamma-Ray Burst Afterglows , 2000, astro-ph/0005253.

[22]  F. Walter,et al.  A Search for Molecular Gas in the Nucleus of M87 and Implications for the Fueling of Supermassive Black Holes , 2006, astro-ph/0610488.

[23]  K. Tsinganos,et al.  SYNTHETIC SYNCHROTRON EMISSION MAPS FROM MHD MODELS FOR THE JET OF M87 , 2009, 0901.2634.

[24]  B. Dewitt,et al.  Black holes (Les astres occlus) , 1973 .

[25]  O. Blaes,et al.  Global General Relativistic Magnetohydrodynamic Simulation of a Tilted Black Hole Accretion Disk , 2007, 0706.4303.

[26]  C. Gammie,et al.  PAIR PRODUCTION IN LOW-LUMINOSITY GALACTIC NUCLEI , 2011, 1104.2042.

[27]  D. Graham,et al.  6-cm VLBI observations of compact radio sources , 1981 .

[28]  E. Agol,et al.  MILLIMETER FLARES AND VLBI VISIBILITIES FROM RELATIVISTIC SIMULATIONS OF MAGNETIZED ACCRETION ONTO THE GALACTIC CENTER BLACK HOLE , 2009, 0909.0267.

[29]  Hot One-Temperature Accretion Flows Around Black Holes , 1996, astro-ph/9601074.

[30]  Duccio Macchetto,et al.  The Optical-Near-Infrared Spectrum of the M87 Jet fromHubble Space Telescope Observations , 2000, astro-ph/0012044.

[31]  A. Broderick,et al.  PARSEC-SCALE FARADAY ROTATION MEASURES FROM GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS , 2010, 1006.5015.

[32]  A. Wilson,et al.  CHANDRA X-RAY IMAGING AND SPECTROSCOPY OF THE M87 JET AND NUCLEUS , 2001, astro-ph/0112097.

[33]  Tiziana Di Matteo,et al.  Accretion onto the Supermassive Black Hole in M87 , 2002, astro-ph/0202238.

[34]  Eric Agol,et al.  Viewing the Shadow of the Black Hole at the Galactic Center. , 2000 .

[35]  R. Blandford,et al.  Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations , 2008, 0812.1060.

[36]  Charles F. Gammie,et al.  HARM: A NUMERICAL SCHEME FOR GENERAL RELATIVISTIC MAGNETOHYDRODYNAMICS , 2003 .

[37]  John A. Biretta,et al.  Formation of the radio jet in M87 at 100 Schwarzschild radii from the central black hole , 1999, Nature.

[38]  E. Quataert,et al.  Synchrotron Radiation from Radiatively Inefficient Accretion Flow Simulations: Applications to Sagittarius A* , 2004, astro-ph/0411627.

[39]  Noriyuki Kawaguchi,et al.  An origin of the radio jet in M87 at the location of the central black hole , 2011, Nature.

[40]  Sebastian Heinz,et al.  Analysis of the Synchrotron Emission from the M87 Jet , 1997 .

[41]  K. Westfold,et al.  Elliptic Polarization of Synchrotron Radiation , 1968 .

[42]  William B. Sparks,et al.  The Mid-Infrared Emission of M87 , 2007, 0704.1156.

[43]  Karl Gebhardt,et al.  THE BLACK HOLE MASS, STELLAR MASS-TO-LIGHT RATIO, AND DARK HALO IN M87 , 2009, 0906.1492.

[44]  A. Niell,et al.  Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.

[45]  William B. Sparks,et al.  HUBBLE SPACE TELESCOPE Observations of Superluminal Motion in the M87 Jet , 1999 .

[46]  Kinwah Wu,et al.  Radiation transfer of emission lines in curved space-time , 2004, astro-ph/0406401.

[47]  Stanford,et al.  Hot Self-Similar Relativistic Magnetohydrodynamic Flows , 2008, 0801.1120.

[48]  Harvard,et al.  EVIDENCE FOR LOW BLACK HOLE SPIN AND PHYSICALLY MOTIVATED ACCRETION MODELS FROM MILLIMETER-VLBI OBSERVATIONS OF SAGITTARIUS A* , 2010, 1011.2770.

[49]  Cambridge,et al.  The 'Quiescent' black hole in M87 , 1996 .