Synthesis, electronic transport and optical properties of Si:α-Fe2O3 single crystals

We report the synthesis of silicon-doped hematite (Si:α-Fe2O3) single crystals via chemical vapor transport, with Si incorporation on the order of 1019 cm−3. The conductivity, Seebeck and Hall effect were measured in the basal plane between 200 and 400 K. Distinct differences in electron transport were observed above and below the magnetic transition temperature of hematite at ∼265 K (the Morin transition, TM). Above 265 K, transport was found to agree with the adiabatic small-polaron model, the conductivity was characterized by an activation energy of ∼100 meV and the Hall effect was dominated by the weak ferromagnetism of the material. A room temperature electron drift mobility of ∼10−2 cm2 V−1 s−1 was estimated. Below TM, the activation energy increased to ∼160 meV and a conventional Hall coefficient could be determined. In this regime, the Hall coefficient was negative and the corresponding Hall mobility was temperature-independent with a value of ∼10−1 cm2 V−1 s−1. Seebeck coefficient measurements indicated that the silicon donors were fully ionized in the temperature range studied. Finally, we observed a broad infrared absorption upon doping and tentatively assign the feature at ∼0.8 eV to photon-assisted small-polaron hops. These results are discussed in the context of existing hematite transport studies.

[1]  Piers R. F. Barnes,et al.  Enhancement of Photoelectrochemical Hydrogen Production from Hematite Thin Films by the Introduction of Ti and Si , 2007 .

[2]  Yichuan Ling,et al.  Sn-doped hematite nanostructures for photoelectrochemical water splitting. , 2011, Nano letters.

[3]  I. R. Beattie,et al.  The single-crystal Raman spectra of nearly opaque materials. Iron(III) oxide and chromium(III) oxide , 1970 .

[4]  V. Shutthanandan,et al.  Electrical transport properties of Ti-doped Fe2O3(0001) epitaxial films , 2011 .

[5]  U. Gerlach,et al.  Effects of deviations from stoichiometry, oxygen excess and substitution of Cr for Fe on the chemical transport of hematite with TeCl4 as a transporting agent , 1984 .

[6]  D. Emin,et al.  Optical properties of large and small polarons and bipolarons. , 1993, Physical review. B, Condensed matter.

[7]  Michael Grätzel,et al.  Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting , 2009 .

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  T. Duffy,et al.  Raman spectroscopy of Fe2O3 to 62 GPa , 2002 .

[10]  Andrew G. Glen,et al.  APPL , 2001 .

[11]  Michael Grätzel,et al.  Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. , 2010, Angewandte Chemie.

[12]  Eric W. McFarland,et al.  Pt-Doped α-Fe2O3 Thin Films Active for Photoelectrochemical Water Splitting , 2008 .

[13]  G. Acket,et al.  Electric transport in N-type Fe2O3 , 1966 .

[14]  J. Artman,et al.  Magnetic Anisotropy in Antiferromagnetic Corundum-Type Sesquioxides , 1965 .

[15]  D. Emin,et al.  Studies of small-polaron motion IV. Adiabatic theory of the Hall effect , 1969 .

[16]  W. Hess,et al.  Carrier dynamics in α‐Fe2O3 (0001) thin films and single crystals probed by femtosecond transient absorption and reflectivity , 2006 .

[17]  M. Dupuis,et al.  An ab initio model of electron transport in hematite (α-Fe2O3) basal planes , 2003 .

[18]  R. D. Nasby,et al.  Photoassisted electrolysis of water using single crystal α-Fe2O3 anodes , 1976 .

[19]  D. Emin,et al.  Thermoelectric power of small polarons in magnetic semiconductors , 1984 .

[20]  G. Horowitz,et al.  Crystal growth and photoelectrochemical study of Zr-doped α-Fe2O3 single crystal☆ , 1982 .

[21]  S. V. Ovsyannikov,et al.  Galvanomagnetic properties of fast neutron bombarded Fe3O4 magnetite: A case against charge ordering mechanism of the Verwey transition , 2009 .

[22]  Nathan T. Hahn,et al.  Photoelectrochemical Performance of Nanostructured Ti- and Sn-Doped α-Fe2O3 Photoanodes , 2010 .

[23]  J. Kennedy,et al.  α ‐ Fe2 O 3 Photoanodes Doped with Silicon , 1980 .

[24]  D. Emin,et al.  Double Exchange and Small-Polaron Hopping in Magnetic Semiconductors , 1979 .

[25]  D. N. Mirlin,et al.  Optical Absorption by Polarons in Rutile (TiO2) Single Crystals , 1968 .

[26]  P. Hagenmuller,et al.  Anisotropie des proprietes electriques de l'oxyde de fer Fe2O3α , 1984 .

[27]  Yin-Fong Su,et al.  Quantitative reflectance spectra of solid powders as a function of particle size. , 2015, Applied optics.

[28]  Dalva Lúcia Araújo de Faria,et al.  Raman microspectroscopy of some iron oxides and oxyhydroxides , 1997 .

[29]  Michael Grätzel,et al.  Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.

[30]  Yin-Fong Su,et al.  Intensity-Value Corrections for Integrating Sphere Measurements of Solid Samples Measured behind Glass , 2014, Applied spectroscopy.

[31]  A. Bard,et al.  Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: intrinsic behavior of a complex metal oxide. , 2013, Journal of the American Chemical Society.

[32]  Nathan T. Hahn,et al.  Effect of Si Doping and Porosity on Hematite’s (α-Fe2O3) Photoelectrochemical Water Oxidation Performance , 2012 .

[33]  G. Somorjai,et al.  The photoelectrochemistry of niobium doped α-Fe2O3 , 1988 .

[34]  A. Morrish Canted Antiferromagnetism: Hematite , 1995 .

[35]  Weber,et al.  Effects of pressure and isotopic substitution on the Raman spectrum of alpha -Fe2O3: Identification of two-magnon scattering. , 1990, Physical review. B, Condensed matter.

[36]  D. Emin,et al.  Anisotropic small-polaron hopping in W:BiVO4 single crystals , 2015 .

[37]  F. Morin Electrical Properties of a-Fe2O3 , 1954 .

[38]  Michael Grätzel,et al.  Photoelectrochemical Hydrogen Production , 2012 .

[39]  E. Paterson The Iron Oxides. Structure, Properties, Reactions, Occurrences and Uses , 1999 .

[40]  W. White,et al.  Optical absorption spectrum of hematite, αFe2O3 near IR to UV☆ , 1980 .

[41]  A. Morrish,et al.  Neutron diffraction measurements on pure and doped synthetic hematite crystals , 1965 .

[42]  U. Schwertmann,et al.  The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses , 2003 .

[43]  G. Waychunas,et al.  Electron Small Polarons and Their Mobility in Iron (Oxyhydr)oxide Nanoparticles , 2012, Science.

[44]  T. Kaneko,et al.  Field-Induced Transitions in the Hematite Crystal , 1965 .

[45]  V. Farmer The Infrared spectra of minerals , 1974 .

[46]  Y. Moritomo,et al.  Spectroscopic evidence for formation of small polarons in doped manganites , 1998 .

[47]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[48]  A. Dhar,et al.  Optical properties of reduced lithium niobate single crystals , 1990 .

[49]  A. J. Bosman,et al.  Small-polaron versus band conduction in some transition-metal oxides , 1970 .

[50]  B. Dupré,et al.  Electrical properties of pure and titanium-doped hematite single crystals, in the basal plane, at low oxygen pressure , 1990 .

[51]  D. Emin,et al.  Transport properties of amorphous antimony telluride , 2006 .

[52]  F. Morin Electrical Properties of α Fe 2 O 3 and α Fe 2 O 3 Containing Titanium , 1951 .

[53]  John M. Zachara,et al.  Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial Organisms. , 1999, Chemical reviews.

[54]  E. Carter,et al.  Hole transport in pure and doped hematite , 2012 .

[55]  S. V. Ovsyannikov,et al.  High-pressure cycling of hematiteα-Fe2O3: Nanostructuring,in situelectronic transport, and possible charge disproportionation , 2012 .

[56]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[57]  A. Janotti,et al.  Small hole polarons in rare-earth titanates , 2015 .

[58]  Robert M. Hazen,et al.  Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars , 1980 .

[59]  J. P. Remeika,et al.  Magnetic properties of hematite single crystals , 1965 .

[60]  M. Schmidt,et al.  Chemical Vapor Transport Reactions , 2012 .