The Triads Geometric Consistency Index in AHP-Pairwise Comparison Matrices

The paper presents the Triads Geometric Consistency Index ( T - G C I ), a measure for evaluating the inconsistency of the pairwise comparison matrices employed in the Analytic Hierarchy Process (AHP). Based on the Saaty’s definition of consistency for AHP, the new measure works directly with triads of the initial judgements, without having to previously calculate the priority vector, and therefore is valid for any prioritisation procedure used in AHP. The T - G C I is an intuitive indicator defined as the average of the log quadratic deviations from the unit of the intensities of all the cycles of length three. Its value coincides with that of the Geometric Consistency Index ( G C I ) and this allows the utilisation of the inconsistency thresholds as well as the properties of the G C I when using the T - G C I . In addition, the decision tools developed for the G C I can be used when working with triads ( T - G C I ), especially the procedure for improving the inconsistency and the consistency stability intervals of the judgements used in group decision making. The paper further includes a study of the computational complexity of both measures ( T - G C I and G C I ) which allows selecting the most appropriate expression, depending on the size of the matrix. Finally, it is proved that the generalisation of the proposed measure to cycles of any length coincides with the T - G C I . It is not therefore necessary to consider cycles of length greater than three, as they are more complex to obtain and the calculation of their associated measure is more difficult.

[1]  Tamás Rapcsák,et al.  On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices , 2008, J. Glob. Optim..

[2]  M. Kendall,et al.  ON THE METHOD OF PAIRED COMPARISONS , 1940 .

[3]  László Csató,et al.  Axiomatizations of inconsistency indices for triads , 2018, Annals of Operations Research.

[4]  László Csató,et al.  Characterization of an inconsistency ranking for pairwise comparison matrices , 2016, Ann. Oper. Res..

[5]  William E. Stein,et al.  The harmonic consistency index for the analytic hierarchy process , 2007, Eur. J. Oper. Res..

[6]  Waldemar W. Koczkodaj,et al.  On Axiomatization of Inconsistency Indicators for Pairwise Comparisons , 2013, Fundam. Informaticae.

[7]  Jaroslav Ramík,et al.  Inconsistency of pair-wise comparison matrix with fuzzy elements based on geometric mean , 2010, Fuzzy Sets Syst..

[8]  Matteo Brunelli,et al.  Recent Advances on Inconsistency Indices for Pairwise Comparisons - A Commentary , 2015, Fundam. Informaticae.

[9]  Miroslaw Kwiesielewicz,et al.  Inconsistent and contradictory judgements in pairwise comparison method in the AHP , 2004, Comput. Oper. Res..

[10]  Konrad Kulakowski,et al.  The New Triad based Inconsistency Indices for Pairwise Comparisons , 2014, KES.

[11]  Michele Fedrizzi,et al.  Boundary properties of the inconsistency of pairwise comparisons in group decisions , 2014, Eur. J. Oper. Res..

[12]  Josep M. Colomer,et al.  Ramon Llull: from ‘Ars electionis’ to social choice theory , 2011, Social Choice and Welfare.

[13]  R. Kalaba,et al.  A comparison of two methods for determining the weights of belonging to fuzzy sets , 1979 .

[14]  Thomas L. Saaty,et al.  How to Make a Decision: The Analytic Hierarchy Process , 1990 .

[15]  Michele Fedrizzi,et al.  A note on the proportionality between some consistency indices in the AHP , 2012, Appl. Math. Comput..

[16]  Gang Kou,et al.  A cosine maximization method for the priority vector derivation in AHP , 2014, Eur. J. Oper. Res..

[17]  Stan Lipovetsky,et al.  Robust estimation of priorities in the AHP , 2002, Eur. J. Oper. Res..

[18]  Konrad Kulakowski,et al.  Inconsistency indices for incomplete pairwise comparisons matrices , 2019, Int. J. Gen. Syst..

[19]  Bice Cavallo,et al.  Investigating Properties of the ⊙-Consistency Index , 2012, IPMU.

[20]  Paweł Kazibudzki,et al.  Redefinition of triad’s inconsistency and its impact on the consistency measurement of pairwise comparison matrix , 2016 .

[21]  Jacek Szybowski,et al.  The Cycle Inconsistency Index in Pairwise Comparisons Matrices , 2016, KES.

[22]  José María Moreno-Jiménez,et al.  Consistency stability intervals for a judgement in AHP decision support systems , 2003, Eur. J. Oper. Res..

[23]  Jacek Szybowski,et al.  Pairwise comparisons simplified , 2013, Appl. Math. Comput..

[24]  Bice Cavallo,et al.  Functional relations and Spearman correlation between consistency indices , 2020, J. Oper. Res. Soc..

[25]  Luis G. Vargas A note on the eigenvalue consistency index , 1980 .

[26]  Saul I. Gass,et al.  Singular value decomposition in AHP , 2004, Eur. J. Oper. Res..

[27]  Lajos Rónyai,et al.  On optimal completion of incomplete pairwise comparison matrices , 2010, Math. Comput. Model..

[28]  M. T. Escobar,et al.  The Core of Consistency in AHP-Group Decision Making , 2008 .

[29]  H. Monsuur An intrinsic consistency threshold for reciprocal matrices , 1997 .

[30]  L. Thurstone A law of comparative judgment. , 1994 .

[31]  W. W. Koczkodaj A new definition of consistency of pairwise comparisons , 1993 .

[32]  M. T. Lamata,et al.  A new measure of consistency for positive reciprocal matrices , 2003 .

[33]  G. Crawford,et al.  A note on the analysis of subjective judgment matrices , 1985 .

[34]  Matteo Brunelli,et al.  Studying a set of properties of inconsistency indices for pairwise comparisons , 2015, Ann. Oper. Res..

[35]  Waldemar W. Koczkodaj,et al.  Generalization of a New Definition of Consistency for Pairwise Comparisons , 1994, Inf. Process. Lett..

[36]  T. L. Saaty A Scaling Method for Priorities in Hierarchical Structures , 1977 .

[37]  José María Moreno-Jiménez,et al.  The precise consistency consensus matrix in a local AHP-group decision making context , 2014, Annals of Operations Research.

[38]  S. Shiraishi,et al.  PROPERTIES OF A POSITIVE RECIPROCAL MATRIX AND THEIR APPLICATION TO AHP , 1998 .

[39]  H. N. Shapiro,et al.  Determining the degree of inconsistency in a set of paired comparisons , 1958 .

[40]  J. Mazurek,et al.  Some notes on the properties of inconsistency indices in pairwise comparisons , 2018 .

[41]  Michele Fedrizzi,et al.  Axiomatic properties of inconsistency indices for pairwise comparisons , 2013, J. Oper. Res. Soc..

[42]  José María Moreno-Jiménez,et al.  Consensus Building in AHP-Group Decision Making: A Bayesian Approach , 2010, Oper. Res..

[43]  Saul I. Gass,et al.  On teaching the analytic hierarchy process , 2003, Comput. Oper. Res..

[44]  José María Moreno-Jiménez,et al.  The geometric consistency index: Approximated thresholds , 2003, Eur. J. Oper. Res..

[45]  László Csató,et al.  A characterization of the Logarithmic Least Squares Method , 2017, Eur. J. Oper. Res..

[46]  John E. Hunter,et al.  Theory Testing and Measurement Error. , 1999 .

[47]  J. Dyer Remarks on the analytic hierarchy process , 1990 .

[48]  José María Moreno-Jiménez,et al.  Some extensions of the precise consistency consensus matrix , 2015, Decis. Support Syst..

[49]  László Csató,et al.  Characterization of the Row Geometric Mean Ranking with a Group Consensus Axiom , 2017, Group Decision and Negotiation.

[50]  Waldemar W. Koczkodaj,et al.  On Axiomatization of Inconsistency Indicators in Pairwise Comparisons , 2013, Int. J. Approx. Reason..

[51]  M. Hiligsmann,et al.  How Well Can Analytic Hierarchy Process be Used to Elicit Individual Preferences? Insights from a Survey in Patients Suffering from Age-Related Macular Degeneration , 2016, The Patient - Patient-Centered Outcomes Research.

[52]  José María Moreno-Jiménez,et al.  Reducing inconsistency measured by the geometric consistency index in the analytic hierarchy process , 2021, Eur. J. Oper. Res..

[53]  José María,et al.  A Spreadsheet Module for Consistent Consensus Building in AHP-Group Decision Making , 2005 .

[54]  Michele Fedrizzi,et al.  Inconsistency indices for pairwise comparison matrices: a numerical study , 2013, Annals of Operations Research.

[55]  Zhibin Wu,et al.  A consistency and consensus based decision support model for group decision making with multiplicative preference relations , 2012, Decis. Support Syst..

[56]  János Fülöp,et al.  On reducing inconsistency of pairwise comparison matrices below an acceptance threshold , 2013, Central Eur. J. Oper. Res..

[57]  H. A. Donegan,et al.  A statistical approach to consistency in AHP , 1993 .

[58]  Qiwen Wang,et al.  An Alternate Measure of Consistency , 1989 .

[59]  Bojan Srdjevic,et al.  Combining different prioritization methods in the analytic hierarchy process synthesis , 2005, Comput. Oper. Res..

[60]  S. Baby,et al.  AHP Modeling for Multicriteria Decision-Making and to Optimise Strategies for Protecting Coastal Landscape Resources , 2013 .

[61]  Jacek Szybowski,et al.  The key properties of inconsistency indicators for a triad in pairwise comparison matrices , 2015, ArXiv.

[62]  Matteo Brunelli,et al.  A survey of inconsistency indices for pairwise comparisons , 2018, Int. J. Gen. Syst..