H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model
暂无分享,去创建一个
G. Meylan | F. Courbin | S. Suyu | V. Bonvin | C. Fassnacht | C. Rusu | D. Sluse | T. Treu | K. C. Wong | M. Auger | S. Hilbert | N. Rumbaugh | A. Sonnenfeld | M. Tewes | T. Collett | C. Spiniello | P. Marshall | L. Koopmans
[1] P. Marshall,et al. Reconstructing the lensing mass in the Universe from photometric catalogue data , 2013, 1303.6564.
[2] C. A. Oxborrow,et al. Planck 2015 results. XVIII. Background geometry & topology , 2015, 1502.01593.
[3] Matthew Colless,et al. The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.
[4] Michelle L. Wilson,et al. A SPECTROSCOPIC SURVEY OF THE FIELDS OF 28 STRONG GRAVITATIONAL LENSES: THE GROUP CATALOG , 2015, 1503.02074.
[5] Degeneracies and scaling relations in general power-law models for gravitational lenses , 2002, astro-ph/0202376.
[6] P. Marshall,et al. STRONG LENS TIME DELAY CHALLENGE. I. EXPERIMENTAL DESIGN , 2013, 1310.4830.
[7] G. Hinshaw,et al. QUANTIFYING DISCORDANCE IN THE 2015 PLANCK CMB SPECTRUM , 2015, 1511.00055.
[8] C. McCully,et al. A new hybrid framework to efficiently model lines of sight to gravitational lenses , 2013, 1401.0197.
[9] A. Amara,et al. The mass-sheet degeneracy and time-delay cosmography: analysis of the strong lens RXJ1131-1231 , 2015, 1511.03662.
[10] G. Meylan,et al. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - XI. Techniques for time delay measurement in presence of microlensing , 2012, 1208.5598.
[11] S. Refsdal. On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .
[12] G. Efstathiou. H 0 revisited , 2013, 1311.3461.
[13] C. Kochanek. What Do Gravitational Lens Time Delays Measure? , 2002, astro-ph/0205319.
[14] U. Oklahoma,et al. THE OPTICAL, ULTRAVIOLET, AND X-RAY STRUCTURE OF THE QUASAR HE 0435−1223 , 2011, 1112.0027.
[15] A. Melchiorri,et al. Reconciling Planck with the local value of H0 in extended parameter space , 2016, 1606.00634.
[16] D. Sluse,et al. Strong Lensing by Galaxies , 2010, 1003.5567.
[17] Xiao-Li Meng,et al. STRONG LENS TIME DELAY CHALLENGE. II. RESULTS OF TDC1 , 2014, 1409.1254.
[18] Alexander S. Szalay,et al. Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.
[19] J. Lesgourgues,et al. The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.
[20] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[21] P. Schneider,et al. Lens galaxies in the Illustris simulation: power-law models and the bias of the Hubble constant from time delays , 2015, 1507.07937.
[22] Ipac,et al. The Lens Redshift and Galaxy Environment for HE 0435−1223 , 2004, astro-ph/0410614.
[23] D. Sluse,et al. Microlensing of the broad-line region in the quadruply imaged quasar HE0435-1223 , 2014, 1405.5014.
[24] Peter Schneider,et al. Ambiguities in gravitational lens models: the density field from the source position transformation , 2016, 1606.04321.
[25] H. Courtois,et al. THE MID-INFRARED TULLY–FISHER RELATION: CALIBRATION OF THE TYPE Ia SUPERNOVA SCALE AND H0 , 2012, 1208.3311.
[26] G. Bruce Berriman,et al. Astrophysics Source Code Library , 2012, ArXiv.
[27] G. Meylan,et al. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses XV. Assessing the achievability and precision of time-delay measurements , 2015, 1506.07524.
[28] I. Shapiro,et al. On model-dependent bounds on H(0) from gravitational images Application of Q0957 + 561A,B , 1985 .
[29] Strong lensing optical depths in a ΛCDM universe , 2007, astro-ph/0703803.
[30] E. Linder. Lensing time delays and cosmological complementarity , 2011, 1109.2592.
[31] G. Meylan,et al. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses , 2004, Proceedings of the International Astronomical Union.
[32] M. Auger,et al. Cosmological constraints from the double source plane lens SDSSJ0946+1006 , 2014, 1403.5278.
[33] Ucsb,et al. Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.
[34] C. Baltay,et al. CONFIRMATION OF A STAR FORMATION BIAS IN TYPE Ia SUPERNOVA DISTANCES AND ITS EFFECT ON THE MEASUREMENT OF THE HUBBLE CONSTANT , 2014, 1412.6501.
[35] S. Dye,et al. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - XIII. Time delays and 9-yr optical monitoring of the lensed quasar RX J1131−1231 , 2012, 1208.6009.
[36] D. Thompson,et al. DISENTANGLING BARYONS AND DARK MATTER IN THE SPIRAL GRAVITATIONAL LENS B1933+503 , 2011, 1110.2536.
[37] R. Hložek,et al. Planck data reconsidered , 2013, 1312.3313.
[38] H. Hoekstra,et al. CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.0032.
[39] C. A. Oxborrow,et al. Planck 2015 results. XV. Gravitational lensing , 2015, 1502.01591.
[40] G. Meylan,et al. Microlensing of the broad line region in 17 lensed quasars , 2012, 1206.0731.
[41] Adam G. Riess,et al. Observational probes of cosmic acceleration , 2012, 1201.2434.
[42] Mass along the Line of Sight to the Gravitational Lens B1608+656: Galaxy Groups and Implications for H_0 , 2005, astro-ph/0510728.
[43] P. Schneider,et al. Ray-tracing through the Millennium Simulation: Born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing , 2008, 0809.5035.
[44] G. Meylan,et al. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses XII. Time delays of the doubly lensed quasars SDSS J1206+4332 and HS 2209+1914 , 2013, 1304.4474.
[45] Scott Croom,et al. The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.
[46] Nutan Rajguru,et al. Bayesian evidence as a tool for comparing datasets , 2006 .
[47] Cambridge,et al. A Bayesian analysis of regularized source inversions in gravitational lensing , 2006, astro-ph/0601493.
[48] K. Benabed,et al. Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code , 2012, 1210.7183.
[49] A. Heavens,et al. Standard rulers, candles, and clocks from the low-redshift universe. , 2014, Physical review letters.
[50] J. Lesgourgues,et al. Fast and accurate CMB computations in non-flat FLRW universes , 2013, 1312.2697.
[51] A. Cuesta,et al. A 2 per cent distance to $z$=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey , 2012, 1202.0090.
[52] D. Sluse,et al. Imprints of the quasar structure in time-delay light curves: Microlensing-aided reverberation mapping , 2014, 1409.4422.
[53] K. Dawson,et al. Determination of the Cosmic Distance Scale from Sunyaev-Zel’dovich Effect and Chandra X-Ray Measurements of High-Redshift Galaxy Clusters , 2005, astro-ph/0512349.
[54] U. Arizona,et al. THE EFFECT OF ENVIRONMENT ON SHEAR IN STRONG GRAVITATIONAL LENSES , 2010, 1011.2504.
[55] S. Suyu,et al. SHARP – III. First use of adaptive-optics imaging to constrain cosmology with gravitational lens time delays , 2016, 1601.01321.
[56] P. Magain,et al. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses: XIV. Time delay of the doubly lensed quasar SDSS J1001+5027 , 2013, 1306.5105.
[57] COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - II. SDSS J0924+0219: the redshift of the lensing galaxy, the quasar spectral variability and the Einstein rings , 2005, astro-ph/0510641.
[58] Nicolas Molinari,et al. Bounded optimal knots for regression splines , 2004, Comput. Stat. Data Anal..
[59] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[60] B. McLeod,et al. The Time Delays of Gravitational Lens HE 0435–1223: An Early-Type Galaxy with a Rising Rotation Curve , 2005, astro-ph/0508070.
[61] F. Courbin,et al. Deconvolution with Correct Sampling , 1997, astro-ph/9704059.
[62] A. Lewis,et al. Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.
[63] Wendy L. Freedman,et al. CARNEGIE HUBBLE PROGRAM: A MID-INFRARED CALIBRATION OF THE HUBBLE CONSTANT , 2012, 1208.3281.
[64] P. Schneider,et al. Source-position transformation: an approximate invariance in strong gravitational lensing , 2013, 1306.4675.
[65] F. Courbin,et al. Firedec: a two-channel finite-resolution image deconvolution algorithm , 2016, 1602.02167.
[66] C. Fassnacht,et al. Galaxy Number Counts and Implications for Strong Lensing , 2009, 0909.4301.
[67] P. Marshall,et al. DISSECTING THE GRAVITATIONAL LENS B1608+656. II. PRECISION MEASUREMENTS OF THE HUBBLE CONSTANT, SPATIAL CURVATURE, AND THE DARK ENERGY EQUATION OF STATE , 2009, 0910.2773.
[68] COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. III. Redshift of the lensing galaxy , 2005, astro-ph/0511026.
[69] S. Ho,et al. Improvement of cosmological neutrino mass bounds , 2016, 1605.04320.
[70] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.
[71] S. Suyu,et al. Spectroscopy and high-resolution imaging of the gravitational lens SDSS J1206+4332 , 2016 .
[72] S. Suyu,et al. The halos of satellite galaxies: the companion of the massive elliptical lens SL2S J08544−0121 , 2010, 1007.4815.
[73] Daniel Thomas,et al. The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.
[74] P. Marshall,et al. IMPROVING THE PRECISION OF TIME-DELAY COSMOGRAPHY WITH OBSERVATIONS OF GALAXIES ALONG THE LINE OF SIGHT , 2013, 1303.3588.
[75] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.
[76] G. Meylan,et al. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - IX. Time delays, lens dynamics and baryonic fraction in HE 0435-1223 , 2010, 1009.1473.
[77] Curtis McCully,et al. Quantifying Environmental and Line-of-sight Effects in Models of Strong Gravitational Lens Systems , 2016, 1601.05417.
[78] Brad E. Tucker,et al. A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.
[79] Institute for Advanced Study,et al. HE 0435-1223 : a wide separation quadruple QSO and gravitational lens , 2002, astro-ph/0207062.
[80] P. Schneider,et al. Mass-sheet degeneracy, power-law models and external convergence: Impact on the determination of the Hubble constant from gravitational lensing , 2013, 1306.0901.
[81] K. Schahmaneche,et al. Improved Photometric Calibration of the SNLS and the SDSS Supernova Surveys , 2012, 1212.4864.
[82] Olga Mena,et al. New constraints on coupled dark energy from the Planck satellite experiment , 2013 .
[83] C. A. Oxborrow,et al. Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.
[84] M. Reid,et al. THE MEGAMASER COSMOLOGY PROJECT. VIII. A GEOMETRIC DISTANCE TO NGC 5765b , 2015, 1511.08311.
[85] G. Meylan,et al. COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA , 2013, 1306.4732.
[86] C. Fassnacht,et al. A Determination of H0 with the CLASS Gravitational Lens B1608+656. III. A Significant Improvement in the Precision of the Time Delay Measurements , 2002, astro-ph/0208420.
[87] Adam A. Miller,et al. iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova , 2016, Science.
[88] G. Meylan,et al. TWO ACCURATE TIME-DELAY DISTANCES FROM STRONG LENSING: IMPLICATIONS FOR COSMOLOGY , 2012, 1208.6010.