H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model

We present a new measurement of the Hubble Constant H-0 and other cosmological parameters based on the joint analysis of three multiply imaged quasar systems with measured gravitational time delays. First, we measure the time delay of HE 0435-1223 from 13-yr light curves obtained as part of the COSMOGRAIL project. Companion papers detail the modelling of the main deflectors and line-of-sight effects, and how these data are combined to determine the time-delay distance of HE 0435-1223. Crucially, the measurements are carried out blindly with respect to cosmological parameters in order to avoid confirmation bias. We then combine the time-delay distance of HE 0435-1223 with previous measurements from systems B1608+656 and RXJ1131-1231 to create a Time Delay Strong Lensing probe (IDSL). In flat A cold dark matter (ACDM) with free matter and energy density, we find H-0 = 71.9(-3.0)(+2.4) km s(-1) Mpc(-1) and Omega(Lambda) = 0.62(-0.35)(+0.24) This measurement is completely independent of, and in agreement with, the local distance ladder measurements of H-0. We explore more general cosmological models combining TDSL with other probes, illustrating its power to break degeneracies inherent to other methods. The joint constraints from IDSL and Planck are H-0 = 69.2(-2.2)(+1.4) km s(-1) Mpc(-1), Omega(Lambda) = 0.70(-0.01)(+0.01) and Omega(k) = 0.003(-0.006)(+0.004) in open ACDM and H-0 = 79.0(-4.2)(+4.4) km s(-1) Mpc(-1), Omega(de) = 0.77(-0.03)(+0.02) and w = -1.38(-0.16)(+0.14) in flat wCDM. In combination with Planck and baryon acoustic oscillation data, when relaxing the constraints on the numbers of relativistic species we find N-eff = 3.34(-0.21)(+0.21) in N-eff Lambda CDM and when relaxing the total mass of neutrinos we find Sigma rn(nu) <= 0.182 eV in m(nu) Lambda CDM. Finally, in an open wCDM in combination with Planck and cosmic microwave background lensing, we find H-0 = 77.9(-4.2)(+5.0) km s(-1) Mpc(-1), Omega(de) = 0.77(-0.03)(+0.03), Omega(k) = -0.003(-0.004)(+0.004) and w = -1.37(-0.23)(+0.18).

[1]  P. Marshall,et al.  Reconstructing the lensing mass in the Universe from photometric catalogue data , 2013, 1303.6564.

[2]  C. A. Oxborrow,et al.  Planck 2015 results. XVIII. Background geometry & topology , 2015, 1502.01593.

[3]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[4]  Michelle L. Wilson,et al.  A SPECTROSCOPIC SURVEY OF THE FIELDS OF 28 STRONG GRAVITATIONAL LENSES: THE GROUP CATALOG , 2015, 1503.02074.

[5]  Degeneracies and scaling relations in general power-law models for gravitational lenses , 2002, astro-ph/0202376.

[6]  P. Marshall,et al.  STRONG LENS TIME DELAY CHALLENGE. I. EXPERIMENTAL DESIGN , 2013, 1310.4830.

[7]  G. Hinshaw,et al.  QUANTIFYING DISCORDANCE IN THE 2015 PLANCK CMB SPECTRUM , 2015, 1511.00055.

[8]  C. McCully,et al.  A new hybrid framework to efficiently model lines of sight to gravitational lenses , 2013, 1401.0197.

[9]  A. Amara,et al.  The mass-sheet degeneracy and time-delay cosmography: analysis of the strong lens RXJ1131-1231 , 2015, 1511.03662.

[10]  G. Meylan,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - XI. Techniques for time delay measurement in presence of microlensing , 2012, 1208.5598.

[11]  S. Refsdal On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .

[12]  G. Efstathiou H 0 revisited , 2013, 1311.3461.

[13]  C. Kochanek What Do Gravitational Lens Time Delays Measure? , 2002, astro-ph/0205319.

[14]  U. Oklahoma,et al.  THE OPTICAL, ULTRAVIOLET, AND X-RAY STRUCTURE OF THE QUASAR HE 0435−1223 , 2011, 1112.0027.

[15]  A. Melchiorri,et al.  Reconciling Planck with the local value of H0 in extended parameter space , 2016, 1606.00634.

[16]  D. Sluse,et al.  Strong Lensing by Galaxies , 2010, 1003.5567.

[17]  Xiao-Li Meng,et al.  STRONG LENS TIME DELAY CHALLENGE. II. RESULTS OF TDC1 , 2014, 1409.1254.

[18]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[19]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.

[20]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[21]  P. Schneider,et al.  Lens galaxies in the Illustris simulation: power-law models and the bias of the Hubble constant from time delays , 2015, 1507.07937.

[22]  Ipac,et al.  The Lens Redshift and Galaxy Environment for HE 0435−1223 , 2004, astro-ph/0410614.

[23]  D. Sluse,et al.  Microlensing of the broad-line region in the quadruply imaged quasar HE0435-1223 , 2014, 1405.5014.

[24]  Peter Schneider,et al.  Ambiguities in gravitational lens models: the density field from the source position transformation , 2016, 1606.04321.

[25]  H. Courtois,et al.  THE MID-INFRARED TULLY–FISHER RELATION: CALIBRATION OF THE TYPE Ia SUPERNOVA SCALE AND H0 , 2012, 1208.3311.

[26]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[27]  G. Meylan,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses XV. Assessing the achievability and precision of time-delay measurements , 2015, 1506.07524.

[28]  I. Shapiro,et al.  On model-dependent bounds on H(0) from gravitational images Application of Q0957 + 561A,B , 1985 .

[29]  Strong lensing optical depths in a ΛCDM universe , 2007, astro-ph/0703803.

[30]  E. Linder Lensing time delays and cosmological complementarity , 2011, 1109.2592.

[31]  G. Meylan,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses , 2004, Proceedings of the International Astronomical Union.

[32]  M. Auger,et al.  Cosmological constraints from the double source plane lens SDSSJ0946+1006 , 2014, 1403.5278.

[33]  Ucsb,et al.  Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.

[34]  C. Baltay,et al.  CONFIRMATION OF A STAR FORMATION BIAS IN TYPE Ia SUPERNOVA DISTANCES AND ITS EFFECT ON THE MEASUREMENT OF THE HUBBLE CONSTANT , 2014, 1412.6501.

[35]  S. Dye,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - XIII. Time delays and 9-yr optical monitoring of the lensed quasar RX J1131−1231 , 2012, 1208.6009.

[36]  D. Thompson,et al.  DISENTANGLING BARYONS AND DARK MATTER IN THE SPIRAL GRAVITATIONAL LENS B1933+503 , 2011, 1110.2536.

[37]  R. Hložek,et al.  Planck data reconsidered , 2013, 1312.3313.

[38]  H. Hoekstra,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.0032.

[39]  C. A. Oxborrow,et al.  Planck 2015 results. XV. Gravitational lensing , 2015, 1502.01591.

[40]  G. Meylan,et al.  Microlensing of the broad line region in 17 lensed quasars , 2012, 1206.0731.

[41]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[42]  Mass along the Line of Sight to the Gravitational Lens B1608+656: Galaxy Groups and Implications for H_0 , 2005, astro-ph/0510728.

[43]  P. Schneider,et al.  Ray-tracing through the Millennium Simulation: Born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing , 2008, 0809.5035.

[44]  G. Meylan,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses XII. Time delays of the doubly lensed quasars SDSS J1206+4332 and HS 2209+1914 , 2013, 1304.4474.

[45]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[46]  Nutan Rajguru,et al.  Bayesian evidence as a tool for comparing datasets , 2006 .

[47]  Cambridge,et al.  A Bayesian analysis of regularized source inversions in gravitational lensing , 2006, astro-ph/0601493.

[48]  K. Benabed,et al.  Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code , 2012, 1210.7183.

[49]  A. Heavens,et al.  Standard rulers, candles, and clocks from the low-redshift universe. , 2014, Physical review letters.

[50]  J. Lesgourgues,et al.  Fast and accurate CMB computations in non-flat FLRW universes , 2013, 1312.2697.

[51]  A. Cuesta,et al.  A 2 per cent distance to $z$=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey , 2012, 1202.0090.

[52]  D. Sluse,et al.  Imprints of the quasar structure in time-delay light curves: Microlensing-aided reverberation mapping , 2014, 1409.4422.

[53]  K. Dawson,et al.  Determination of the Cosmic Distance Scale from Sunyaev-Zel’dovich Effect and Chandra X-Ray Measurements of High-Redshift Galaxy Clusters , 2005, astro-ph/0512349.

[54]  U. Arizona,et al.  THE EFFECT OF ENVIRONMENT ON SHEAR IN STRONG GRAVITATIONAL LENSES , 2010, 1011.2504.

[55]  S. Suyu,et al.  SHARP – III. First use of adaptive-optics imaging to constrain cosmology with gravitational lens time delays , 2016, 1601.01321.

[56]  P. Magain,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses: XIV. Time delay of the doubly lensed quasar SDSS J1001+5027 , 2013, 1306.5105.

[57]  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - II. SDSS J0924+0219: the redshift of the lensing galaxy, the quasar spectral variability and the Einstein rings , 2005, astro-ph/0510641.

[58]  Nicolas Molinari,et al.  Bounded optimal knots for regression splines , 2004, Comput. Stat. Data Anal..

[59]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[60]  B. McLeod,et al.  The Time Delays of Gravitational Lens HE 0435–1223: An Early-Type Galaxy with a Rising Rotation Curve , 2005, astro-ph/0508070.

[61]  F. Courbin,et al.  Deconvolution with Correct Sampling , 1997, astro-ph/9704059.

[62]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[63]  Wendy L. Freedman,et al.  CARNEGIE HUBBLE PROGRAM: A MID-INFRARED CALIBRATION OF THE HUBBLE CONSTANT , 2012, 1208.3281.

[64]  P. Schneider,et al.  Source-position transformation: an approximate invariance in strong gravitational lensing , 2013, 1306.4675.

[65]  F. Courbin,et al.  Firedec: a two-channel finite-resolution image deconvolution algorithm , 2016, 1602.02167.

[66]  C. Fassnacht,et al.  Galaxy Number Counts and Implications for Strong Lensing , 2009, 0909.4301.

[67]  P. Marshall,et al.  DISSECTING THE GRAVITATIONAL LENS B1608+656. II. PRECISION MEASUREMENTS OF THE HUBBLE CONSTANT, SPATIAL CURVATURE, AND THE DARK ENERGY EQUATION OF STATE , 2009, 0910.2773.

[68]  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. III. Redshift of the lensing galaxy , 2005, astro-ph/0511026.

[69]  S. Ho,et al.  Improvement of cosmological neutrino mass bounds , 2016, 1605.04320.

[70]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[71]  S. Suyu,et al.  Spectroscopy and high-resolution imaging of the gravitational lens SDSS J1206+4332 , 2016 .

[72]  S. Suyu,et al.  The halos of satellite galaxies: the companion of the massive elliptical lens SL2S J08544−0121 , 2010, 1007.4815.

[73]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[74]  P. Marshall,et al.  IMPROVING THE PRECISION OF TIME-DELAY COSMOGRAPHY WITH OBSERVATIONS OF GALAXIES ALONG THE LINE OF SIGHT , 2013, 1303.3588.

[75]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[76]  G. Meylan,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - IX. Time delays, lens dynamics and baryonic fraction in HE 0435-1223 , 2010, 1009.1473.

[77]  Curtis McCully,et al.  Quantifying Environmental and Line-of-sight Effects in Models of Strong Gravitational Lens Systems , 2016, 1601.05417.

[78]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[79]  Institute for Advanced Study,et al.  HE 0435-1223 : a wide separation quadruple QSO and gravitational lens , 2002, astro-ph/0207062.

[80]  P. Schneider,et al.  Mass-sheet degeneracy, power-law models and external convergence: Impact on the determination of the Hubble constant from gravitational lensing , 2013, 1306.0901.

[81]  K. Schahmaneche,et al.  Improved Photometric Calibration of the SNLS and the SDSS Supernova Surveys , 2012, 1212.4864.

[82]  Olga Mena,et al.  New constraints on coupled dark energy from the Planck satellite experiment , 2013 .

[83]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[84]  M. Reid,et al.  THE MEGAMASER COSMOLOGY PROJECT. VIII. A GEOMETRIC DISTANCE TO NGC 5765b , 2015, 1511.08311.

[85]  G. Meylan,et al.  COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA , 2013, 1306.4732.

[86]  C. Fassnacht,et al.  A Determination of H0 with the CLASS Gravitational Lens B1608+656. III. A Significant Improvement in the Precision of the Time Delay Measurements , 2002, astro-ph/0208420.

[87]  Adam A. Miller,et al.  iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova , 2016, Science.

[88]  G. Meylan,et al.  TWO ACCURATE TIME-DELAY DISTANCES FROM STRONG LENSING: IMPLICATIONS FOR COSMOLOGY , 2012, 1208.6010.