Layered metal chalcogenide based anode materials for high performance sodium ion batteries: A review

[1]  Jiabao Li,et al.  A High‐Performance Alloy‐Based Anode Enabled by Surface and Interface Engineering for Wide‐Temperature Sodium‐Ion Batteries , 2023, Advanced Energy Materials.

[2]  H. Pang,et al.  Recent Progress in MOF‐Derived Porous Materials as Electrodes for High‐Performance Lithium‐Ion Batteries , 2023, Advanced Functional Materials.

[3]  Zhenming Xu,et al.  Recycling Hazardous and Valuable Electrolyte in Spent Lithium-Ion Batteries: Urgency, Progress, Challenge, and Viable Approach. , 2023, Chemical reviews.

[4]  S. Dou,et al.  Advanced Anode Materials for Rechargeable Sodium-Ion Batteries. , 2023, ACS nano.

[5]  Hui Li,et al.  Diatomite‐Templated Synthesis of Single‐Atom Cobalt‐Doped MoS2/Carbon Composites to Boost Sodium Storage , 2023, Advanced materials.

[6]  Lin Li,et al.  Boosting the Development of Hard Carbon for Sodium‐Ion Batteries: Strategies to Optimize the Initial Coulombic Efficiency , 2023, Advanced Functional Materials.

[7]  Pooi See Lee,et al.  Optimization Strategies Toward Functional Sodium‐Ion Batteries , 2023, ENERGY & ENVIRONMENTAL MATERIALS.

[8]  Guiling Wang,et al.  Surface engineering of core-shell MoS2@N-doped carbon spheres as stable and ultra-long lifetime anode for sodium-ion batteries. , 2023, Journal of colloid and interface science.

[9]  Guangmin Zhou,et al.  Engineering the Interfacial Doping of 2d Heterostructures with Good Bidirectional Reaction Kinetics for Durably Reversible Sodium-Ion Batteries , 2023, SSRN Electronic Journal.

[10]  Guoxiu Wang,et al.  Interface Engineering of Fe7S8/FeS2 Heterostructure in situ Encapsulated into Nitrogen-Doped Carbon Nanotubes for High Power Sodium-Ion Batteries , 2023, Nano-Micro Letters.

[11]  Gurwinder Singh,et al.  Recent Advances in Carbon‐Based Electrodes for Energy Storage and Conversion , 2023, Advanced science.

[12]  Zhaoyang Gao,et al.  Ti3C2Tx MXenes Bonded MoS2 Nanosheets for Superior Sodium−Ion Batteries , 2023, Journal of Alloys and Compounds.

[13]  Meisheng Han,et al.  Single‐Layered MoS2 Fabricated by Charge‐Driven Interlayer Expansion for Superior Lithium/Sodium/Potassium‐Ion‐Battery Anodes , 2023, Advanced science.

[14]  Haijia Zhao,et al.  Electrochemically exfoliated WS2 in molten salt for sodium-ion battery anode , 2023, Rare Metals.

[15]  C. Mirkin,et al.  Morphology Engineering in Multicomponent Hollow Metal Chalcogenide Nanoparticles. , 2023, ACS nano.

[16]  Dehui Deng,et al.  Evolution of Stabilized 1T-MoS2 by Atomic-Interface Engineering of 2H-MoS2/Fe-Nx towards Enhanced Sodium Ion Storage. , 2023, Angewandte Chemie.

[17]  Wei Chen,et al.  Ultrathin CuF2-Rich Solid-Electrolyte Interphase Induced by Cation-Tailored Double Electrical Layer toward Durable Sodium Storage. , 2023, Angewandte Chemie.

[18]  L. Monconduit,et al.  The evaluation of Sb and SnSb negative electrode materials in full Na-ion cells , 2022, Journal of Power Sources.

[19]  R. Apsari,et al.  Synthesis of metal oxides/sulfides-based nanocomposites and their environmental applications: A review , 2022, Materials Today Sustainability.

[20]  Z. Hou,et al.  Soft-template-assisted synthesis of Petals-like MoS2 nanosheets covered with N-doped carbon for long cycle-life sodium-ion battery anode , 2022, Journal of Electroanalytical Chemistry.

[21]  C. Wolverton,et al.  Theory-guided experimental design in battery materials research , 2022, Science advances.

[22]  Jingwei Xiang,et al.  Building Practical High‐Voltage Cathode Materials for Lithium‐Ion Batteries , 2022, Advanced materials.

[23]  Gang Lian,et al.  Assembly of flower-like VS2/N-doped porous carbon with expanded (001) plane on rGO for superior Na-ion and K-ion storage , 2022, Nano Research.

[24]  Hao Liu,et al.  Multidimensional VO2 nanotubes/Ti3C2 MXene composite for efficient electrochemical lithium/sodium-ion storage , 2022, Journal of Power Sources.

[25]  Yan Xu,et al.  Enhancing stability of MoS2 catalysts for sulfur-resistant methanation by tuning interlayer interaction , 2022, Molecular Catalysis.

[26]  Hui-Xia Zhao,et al.  Unraveling Anionic Redox for Sodium Layered Oxide Cathodes: Breakthroughs and Perspectives , 2021, Advanced materials.

[27]  Amol Phadke,et al.  Economic, environmental and grid-resilience benefits of converting diesel trains to battery-electric , 2021, Nature Energy.

[28]  G. Guan,et al.  MOFs-derived transition metal sulfide composites for advanced sodium ion batteries , 2021 .

[29]  Tianyu Gao,et al.  Metallic VS2/graphene heterostructure as an ultra-high rate and high-specific capacity anode material for Li/Na-ion batteries. , 2021, Physical chemistry chemical physics : PCCP.

[30]  Amar M. Patil,et al.  A novel vanadium-mediated MoS2 with metallic behavior for sodium ion batteries: Achieving fast Na+ diffusion to enhance electrochemical kinetics , 2021 .

[31]  G. Guan,et al.  Controllable Synthesis of Novel Orderly Layered VMoS2 Anode Materials with Super Electrochemical Performance for Sodium-Ion Batteries. , 2021, ACS applied materials & interfaces.

[32]  V. Pol,et al.  WS2 anode in Na and K-ion battery: Effect of upper cut-off potential on electrochemical performance , 2021, Electrochimica Acta.

[33]  Yuhan Wu,et al.  Recent advances in ferromagnetic metal sulfides and selenides as anodes for sodium- and potassium-ion batteries , 2021 .

[34]  Lili Wang,et al.  Carbon-Reinforced Nb2CTx MXene/MoS2 Nanosheets as a Superior Rate and High-Capacity Anode for Sodium-Ion Batteries. , 2021, ACS nano.

[35]  Lingna Sun,et al.  Heterostructure enhanced sodium storage performance for SnS2 in hierarchical SnS2/Co3S4 nanosheet array composite , 2021, Journal of Materials Chemistry A.

[36]  K. Amine,et al.  Vacancy-Enabled O3 Phase Stabilization for Manganese-rich Layered Sodium Cathodes. , 2021, Angewandte Chemie.

[37]  Jianxing Shen,et al.  Novel Designed MnS‐MoS2 Heterostructure for Fast and Stable Li/Na Storage:Insights into the Advanced Mechanism Attributed to Phase Engineering , 2020, Advanced Functional Materials.

[38]  Q. Cai,et al.  Hierarchical Microtubes Constructed by MoS2 Nanosheets with Enhanced Sodium Storage Performance. , 2020, ACS nano.

[39]  Feng Wu,et al.  Co‐Construction of Sulfur Vacancies and Heterojunctions in Tungsten Disulfide to Induce Fast Electronic/Ionic Diffusion Kinetics for Sodium‐Ion Batteries , 2020, Advanced materials.

[40]  Yanjie Hu,et al.  Supersaturated bridge-sulfur and vanadium co-doped M0S2 nanosheet arrays with enhanced sodium storage capability , 2020, Nano Research.

[41]  X. Lou,et al.  Recent Advances on Mixed Metal Sulfides for Advanced Sodium‐Ion Batteries , 2020, Advanced materials.

[42]  Amar M. Patil,et al.  Coral reef-like MoS2 microspheres with 1T/2H phase as high-performance anode material for sodium ion batteries , 2020, Journal of Materials Science.

[43]  P. Shen,et al.  Template-free growth of spherical vanadium disulfide nanoflowers as efficient anodes for sodium/potassium ion batteries , 2020 .

[44]  T. Zhang,et al.  Ultrahigh-rate sodium-ion battery anode enabled by vertically aligned (1T-2H MoS2)/CoS2 heteronanosheets , 2020 .

[45]  Jiajia Huang,et al.  Rational Design of Hierarchical SnS2 Microspheres with S Vacancy for Enhanced Sodium Storage Performance , 2020, ACS Sustainable Chemistry & Engineering.

[46]  Xianluo Hu,et al.  Coupling of bowl-like VS2 nanosheet arrays and carbon nanofiber enables ultrafast Na+-Storage and robust flexibility for sodium-ion hybrid capacitors , 2020 .

[47]  Qiaobao Zhang,et al.  Covalent Assembly of MoS2 Nanosheets with SnS Nanodots as Linkages for Lithium/Sodium-Ion Batteries. , 2020, Angewandte Chemie.

[48]  Peng Zhang,et al.  Enabling remarkable cycling performance of high-loading MoS2@Graphene anode for sodium ion batteries with tunable cut-off voltage , 2020 .

[49]  Peng Zhang,et al.  High-quality rGO/MoS2 composite via a facile “prereduction-microwave” strategy for enhanced lithium and sodium storage , 2020 .

[50]  K. Amine,et al.  Highly-reversible Sodiation/desodiation from Carbon-sandwiched SnS2 Nanosheets Anode for Sodium Ion Battery. , 2020, Nano letters.

[51]  G. G. Eshetu,et al.  Electrolytes and Interphases in Sodium‐Based Rechargeable Batteries: Recent Advances and Perspectives , 2020, Advanced Energy Materials.

[52]  Mingdeng Wei,et al.  SnS2 nanosheets anchored on porous carbon fibers for high performance of sodium-ion batteries , 2020 .

[53]  A. Neville,et al.  Rapid deposition of WS2 platelet thin films as additive-free anode for sodium ion batteries with superior volumetric capacity , 2020, Energy Storage Materials.

[54]  Xing Ou,et al.  Bimetallic Sulfide Sb2S3@FeS2 Hollow Nanorods as High-Performance Anode Materials for Sodium-Ion Batteries. , 2020, ACS nano.

[55]  Chenghao Yang,et al.  Heterointerface Engineering of Hierarchical Bi2S3/MoS2 with Self‐Generated Rich Phase Boundaries for Superior Sodium Storage Performance , 2020, Advanced Functional Materials.

[56]  F. Ciucci,et al.  Dual-phase MoS2 as a high-performance sodium-ion battery anode , 2020 .

[57]  Tingting Li,et al.  Improved lithium and sodium ion storage properties of WS2 anode with three-layer shell structure , 2020 .

[58]  C. Cao,et al.  Cobalt-doping SnS2 nanosheets towards high-performance anodes for sodium ion batteries. , 2019, Nanoscale.

[59]  Mingdeng Wei,et al.  Template-free synthesis of metallic WS2 hollow microspheres as an anode for the sodium-ion battery. , 2019, Journal of colloid and interface science.

[60]  Xuexia He,et al.  Hollow Structure VS 2 @Reduced Graphene Oxide (RGO) Architecture for Enhanced Sodium‐Ion Battery Performance , 2019, ChemElectroChem.

[61]  A. Neville,et al.  Vertically constructed monolithic electrodes for sodium ion batteries: toward low tortuosity and high energy density , 2019, Journal of Materials Chemistry A.

[62]  Z. Wen,et al.  Self‐Assembling of Conductive Interlayer‐Expanded WS2 Nanosheets into 3D Hollow Hierarchical Microflower Bud Hybrids for Fast and Stable Sodium Storage , 2019, Advanced Functional Materials.

[63]  Hongbin Feng,et al.  Room-temperature carbon coating on MoS2/Graphene hybrids with carbon dioxide for enhanced sodium storage , 2019, Carbon.

[64]  Dong‐Won Kim,et al.  Unraveling the Na-ion storage performance of a vertically aligned interlayer-expanded two-dimensional MoS2@C@MoS2 heterostructure , 2019, Journal of Materials Chemistry A.

[65]  Huakun Liu,et al.  Metallic State SnS2 Nanosheets with Expanded Lattice Spacing for High Performance Sodium-ion Battery. , 2019, ChemSusChem.

[66]  M. Fichtner,et al.  Hetero-layered MoS2/C composites enabling ultrafast and durable Na storage , 2019, Energy Storage Materials.

[67]  S. Pal,et al.  Defect Induced Performance Enhancement of Monolayer MoS2 for Li- and Na-Ion Batteries , 2019, The Journal of Physical Chemistry C.

[68]  D. Zhan,et al.  Aging mechanism of MoS2 nanosheets confined in N-doped mesoporous carbon spheres for sodium-ion batteries , 2019, Nano Energy.

[69]  Jiujun Zhang,et al.  Sandwich-Like SnS2/Graphene/SnS2 with Expanded Interlayer Distance as High-Rate Lithium/Sodium-Ion Battery Anode Materials. , 2019, ACS nano.

[70]  Xiaoyu Li,et al.  MoS2 hollow spheres in ether-based electrolyte for high performance sodium ion battery. , 2019, Journal of colloid and interface science.

[71]  K. Amine,et al.  1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2 , 2019, Nano Energy.

[72]  Haiyan Zhang,et al.  Enhanced electrochemical properties of single-layer MoS2 embedded in carbon nanofibers by electrospinning as anode materials for sodium-ion batteries , 2019, Journal of Electroanalytical Chemistry.

[73]  W. Ni,et al.  Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2 , 2019, Journal of Energy Chemistry.

[74]  Xuanxuan Bi,et al.  Sacrificial template synthesis of hollow C@MoS2@PPy nanocomposites as anodes for enhanced sodium storage performance , 2019, Nano Energy.

[75]  Jian Wang,et al.  3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes , 2019, Materials & Design.

[76]  Wei Zhou,et al.  Hierarchical MoS2 Hollow Architectures with Abundant Mo Vacancies for Efficient Sodium Storage. , 2019, ACS nano.

[77]  Xuelin Yang,et al.  Conversion of MoS2 to a Ternary MoS2- xSe x Alloy for High-Performance Sodium-Ion Batteries. , 2019, ACS applied materials & interfaces.

[78]  L. Fu,et al.  Bundled Defect-Rich MoS2 for a High-Rate and Long-Life Sodium-Ion Battery: Achieving 3D Diffusion of Sodium Ion by Vacancies to Improve Kinetics. , 2019, Small.

[79]  K. Jiang,et al.  Tin disulfide embedded in N-, S-doped carbon nanofibers as anode material for sodium-ion batteries , 2019, Chemical Engineering Journal.

[80]  Mingdeng Wei,et al.  Hierarchical spheres constructed by ultrathin VS2 nanosheets for sodium-ion batteries , 2019, Journal of Materials Chemistry A.

[81]  Yan‐Bing He,et al.  Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes , 2019, Nature Communications.

[82]  Yutao Li,et al.  Metal oxide/graphene composite anode materials for sodium-ion batteries , 2019, Energy Storage Materials.

[83]  J. Bao,et al.  Hierarchical Nanospheres Constructed by Ultrathin MoS2 Nanosheets Braced on Nitrogen-Doped Carbon Polyhedra for Efficient Lithium and Sodium Storage. , 2018, ACS applied materials & interfaces.

[84]  Yiju Li,et al.  Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries , 2018, Nano Research.

[85]  Kangli Wang,et al.  Nano-embedded microstructured FeS2@C as a high capacity and cycling-stable Na-storage anode in an optimized ether-based electrolyte , 2018 .

[86]  Meilin Liu,et al.  Construction of MoS2/C Hierarchical Tubular Heterostructures for High-Performance Sodium Ion Batteries. , 2018, ACS nano.

[87]  Wenjun Zhang,et al.  MoS2 nanobelts with (002) plane edges-enriched flat surfaces for high-rate sodium and lithium storage , 2018, Energy Storage Materials.

[88]  Jian Yang,et al.  Few-atomic-layered hollow nanospheres constructed from alternate intercalation of carbon and MoS2 monolayers for sodium and lithium storage , 2018, Nano Energy.

[89]  Wenbin Li,et al.  Nano-grain dependent 3D hierarchical VS 2 microrods with enhanced intercalation kinetic for sodium storage properties , 2018, Journal of Power Sources.

[90]  H. Fan,et al.  Intercalation Na-ion storage in two-dimensional MoS2-xSex and capacity enhancement by selenium substitution , 2018, Energy Storage Materials.

[91]  Guangda Li,et al.  Self-assembled Mn-doped MoS2 hollow nanotubes with significantly enhanced sodium storage for high-performance sodium-ion batteries , 2018 .

[92]  Kan Zhang,et al.  Vertically Oriented MoS2 with Spatially Controlled Geometry on Nitrogenous Graphene Sheets for High‐Performance Sodium‐Ion Batteries , 2018 .

[93]  H. Yang,et al.  3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries , 2018 .

[94]  Zhanwei Xu,et al.  Synthesis of Grain-like MoS2 for High-Performance Sodium-Ion Batteries. , 2018, ChemSusChem.

[95]  X. Lou,et al.  Confining SnS2 Ultrathin Nanosheets in Hollow Carbon Nanostructures for Efficient Capacitive Sodium Storage , 2018 .

[96]  Dan Sun,et al.  MoS2/Graphene Nanosheets from Commercial Bulky MoS2 and Graphite as Anode Materials for High Rate Sodium‐Ion Batteries , 2018 .

[97]  F. Du,et al.  Hierarchical flower-like VS2 nanosheets – A high rate-capacity and stable anode material for sodium-ion battery , 2018 .

[98]  Xiaogang Zhang,et al.  2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries , 2018 .

[99]  Hui Shen,et al.  One step synthesis of SnS2 nanosheets assembled hierarchical tubular structures using metal chelate nanowires as a soluble template for improved Na-ion storage , 2018 .

[100]  Peirong Li,et al.  Engineering SnS2 nanosheet assemblies for enhanced electrochemical lithium and sodium ion storage , 2017 .

[101]  R. Hu,et al.  MoS2 Nanosheets with Conformal Carbon Coating as Stable Anode Materials for Sodium-Ion Batteries , 2017 .

[102]  Wenbin Li,et al.  Facile in situ synthesis of crystalline VOOH-coated VS2 microflowers with superior sodium storage performance , 2017 .

[103]  Jinghua Wu,et al.  Hierarchical VS2 Nanosheet Assemblies: A Universal Host Material for the Reversible Storage of Alkali Metal Ions , 2017, Advanced materials.

[104]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[105]  Meng Yu,et al.  Synthesis of Hollow SnO2/SnS2 Hybrids and Their Application in Sodium‐Ion Batteries , 2017 .

[106]  L. Mai,et al.  Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage , 2017 .

[107]  An‐Hui Lu,et al.  Surfactant-assisted hydrothermally synthesized MoS 2 samples with controllable morphologies and structures for anthracene hydrogenation , 2017 .

[108]  Zhanwei Xu,et al.  Controlling the layered structure of WS2 nanosheets to promote Na+ insertion with enhanced Na-ion storage performance , 2016 .

[109]  Yong-Mook Kang,et al.  Urchin‐Like CoSe2 as a High‐Performance Anode Material for Sodium‐Ion Batteries , 2016 .

[110]  J. Schroers,et al.  Heterogeneous WSx/WO₃ Thorn-Bush Nanofiber Electrodes for Sodium-Ion Batteries. , 2016, ACS nano.

[111]  A. Manthiram,et al.  High-performance Na2Ti2O5 nanowire arrays coated with VS2 nanosheets for sodium-ion storage , 2015 .

[112]  Y. Kang,et al.  Synergetic Effect of Yolk-Shell Structure and Uniform Mixing of SnS-MoS₂ Nanocrystals for Improved Na-Ion Storage Capabilities. , 2015, ACS applied materials & interfaces.

[113]  Yan Yu,et al.  Engineering nanostructured electrode materials for high performance sodium ion batteries: a case study of a 3D porous interconnected WS2/C nanocomposite , 2015 .

[114]  Lifang Jiao,et al.  WS2 Nanowires as a High-Performance Anode for Sodium-Ion Batteries. , 2015, Chemistry.

[115]  Chang Ming Li,et al.  Solvent-mediated directionally self-assembling MoS2 nanosheets into a novel worm-like structure and its application in sodium batteries , 2015 .

[116]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[117]  R. Ma,et al.  Boosting Transport Kinetics of Free-Standing SnS2@Carbon Nanofibers by Electronic Structure Modulation for Advanced Lithium Storage , 2022, Journal of Materials Chemistry A.

[118]  G. Zhu,et al.  Boosting reaction kinetics and improving long cycle life in lamellar VS2/MoS2 Heterojunctions for superior sodium storage performance , 2022, Journal of Materials Chemistry A.

[119]  Baoling Huang,et al.  Rationally designed nanostructured metal chalcogenides for advanced sodium-ion batteries , 2021 .

[120]  Gang Chen,et al.  Vacancy engineering in VS2 nanosheets for ultrafast pseudocapacitive sodium ion storage , 2021 .

[121]  B. Tang,et al.  Molybdenum disulfide synthesized by molybdenum-based metal organic framework with high activity for sodium ion battery , 2021 .

[122]  Yongyao Xia,et al.  In-situ growth of vertically aligned MoS2 nanowalls on reduced graphene oxide enables a large capacity and highly stable anode for sodium ion storage , 2020 .

[123]  Yan Yu,et al.  A spray-freezing approach to reduced graphene oxide/MoS2 hybrids for superior energy storage , 2018 .

[124]  G. Diao,et al.  Space and interface confinement effect of necklace-box structural FeS2/WS2 carbon nanofibers to enhance Na+ storage performance and electrochemical kinetics , 2022 .