Evaluation and comparison of hydrogen production potential of the LIFE fusion reactor by using copper–chlorine (Cu–Cl), cobalt–chlorine (Co–Cl) and sulfur–iodine (S–I) cycles

[1]  A. Acır,et al.  A study of hydrogen production by using SMR, S-I and HTE methods in a PACER fusion concept based on thorium molten salt fuel , 2023, Fuel.

[2]  A. Acır,et al.  A study on nuclear hydrogen production using a novel approach cobalt-chlorine thermochemical cycle in a laser driver fission fusion blanket for various molten salt fuels , 2022, Progress in Nuclear Energy.

[3]  C. A. Brayner de Oliveira Lira,et al.  Exergy study of hydrogen cogeneration and seawater desalination coupled to the HTR-PM nuclear reactor , 2022, International Journal of Hydrogen Energy.

[4]  S. Kubo The roles of nuclear energy in hydrogen production , 2022, Engineering.

[5]  Qi Wang,et al.  Thermo-economic analysis and optimization of the very high temperature gas-cooled reactor-based nuclear hydrogen production system using copper-chlorine cycle , 2021 .

[6]  A. Acır,et al.  Utilization of the Cu–Cl thermochemical cycle for hydrogen production using a laser driver thorium molten salts , 2021 .

[7]  H. Şahin,et al.  Generation-IV reactors and nuclear hydrogen production , 2021 .

[8]  A. Acır,et al.  Investigation of the hydrogen production of a laser FUSION driver thorium breeder using various coolants , 2020 .

[9]  A. Bohé,et al.  Study on an original cobalt-chlorine thermochemical cycle for nuclear hydrogen production , 2020 .

[10]  Ibrahim Dincer,et al.  A multi-objective optimization of the integrated copper-chlorine cycle for hydrogen production , 2020, Comput. Chem. Eng..

[11]  G. Naterer,et al.  Review and evaluation of clean hydrogen production by the copper–chlorine thermochemical cycle , 2020 .

[12]  I. Dincer,et al.  Energy and exergy analyses of a new integrated thermochemical copper-chlorine cycle for hydrogen production , 2020 .

[13]  Adem Acır,et al.  Uranyum Yakıtlı Bir Lazer Sürücülü Füzyon Reaktöründe (LIFE) Nötronik Performansın Hidrojen Üretimine Etkisi , 2020 .

[14]  Abdulrahman H. Ba-Alawi,et al.  Hydrogen production through the sulfur–iodine cycle using a steam boiler heat source for risk and techno-socio-economic cost (RSTEC) reduction , 2020 .

[15]  I. Dincer,et al.  Thermal management of a new integrated copper-chlorine cycle for hydrogen production , 2020 .

[16]  Binlin Dou,et al.  Experimental study and development of an improved sulfur–iodine cycle integrated with HI electrolysis for hydrogen production , 2020 .

[17]  J. Hartvigsen,et al.  Comparative review of hydrogen production technologies for nuclear hybrid energy systems , 2020 .

[18]  I. Dincer,et al.  Analysis and assessment of the integrated generation IV gas-cooled fast nuclear reactor and copper-chlorine cycle for hydrogen and electricity production , 2020 .

[19]  A. Jana,et al.  Simulating reactive distillation of HIx (HI–H2O–I2) system in Sulphur-Iodine cycle for hydrogen production , 2020 .

[20]  A. Acır,et al.  Investigation of hydrogen production potential of the LASER inertial confinement fusion fission energy (LIFE) engine , 2019, International Journal of Hydrogen Energy.

[21]  Ibrahim Dincer,et al.  Thermodynamic assessment of a lab-scale experimental copper-chlorine cycle for sustainable hydrogen production , 2019, International Journal of Hydrogen Energy.

[22]  Binlin Dou,et al.  Simulation study on the microscopic characteristics of electrochemical Bunsen reaction in the sulfur–iodine cycle for renewable hydrogen production , 2019, Applied Thermal Engineering.

[23]  I. Dincer,et al.  Thermodynamic viability of a new three step high temperature Cu-Cl cycle for hydrogen production , 2018, International Journal of Hydrogen Energy.

[24]  I. Dincer,et al.  Modelling of hydrogen production from hydrogen sulfide in geothermal power plants , 2018, International Journal of Hydrogen Energy.

[25]  A. Acır,et al.  Monte Carlo calculations of the incineration of plutonium and minor actinides of laser fusion inertial confinement fusion fission energy (LIFE) engine , 2018, Plasma Science and Technology.

[26]  M. Rosen,et al.  Hydrogen production using high temperature nuclear reactors: Efficiency analysis of a combined cycle , 2016 .

[27]  W. Meier,et al.  Fusion technology aspects of laser inertial fusion energy (LIFE) , 2014 .

[28]  S. Şahin,et al.  Neutronic investigations of a laser fusion driven lithium cooled thorium breeder , 2014 .

[29]  A. Acır Neutronic Analysis of the Laser Inertial Confinement Fusion–Fission Energy (LIFE) Engine Using Various Thorium Molten Salts , 2013 .

[30]  N. Demir Hydrogen production via steam-methane reforming in a SOMBRERO fusion breeder with ceramic fuel particles , 2013 .

[31]  H. Şahin,et al.  LIFE hybrid reactor as reactor grade plutonium burner , 2012 .

[32]  R P Abbott,et al.  Fusion technologies for Laser Inertial Fusion Energy (LIFE) , 2011 .

[33]  M. J. Khan,et al.  Fissile fuel breeding and minor actinide transmutation in the life engine , 2011 .

[34]  Gregory A. Moses,et al.  Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine , 2010 .

[35]  Ibrahim Dincer,et al.  Canada’s program on nuclear hydrogen production and the thermochemical Cu–Cl cycle , 2010 .

[36]  Gamze Genç Hydrogen production potential of APEX fusion transmuter fueled minor actinide fluoride , 2010 .

[37]  H. Şahin,et al.  Utilization of TRISO fuel with reactor grade plutonium in CANDU reactors , 2010 .

[38]  N. Demir,et al.  Hydrogen production via water splitting process in a molten-salt fusion breeder , 2010 .

[39]  Per F. Peterson,et al.  A Sustainable Nuclear Fuel Cycle Based on Laser Inertial Fusion Energy , 2009 .

[40]  R P Abbott,et al.  Thermal and Mechanical Design Aspects of the LIFE Engine , 2009 .

[41]  Wayne R. Meier,et al.  Parameter study of the LIFE engine nuclear design , 2009 .

[42]  Greg F. Naterer,et al.  Comparison of different copper–chlorine thermochemical cycles for hydrogen production , 2009 .

[43]  M. Lanchi,et al.  S–I thermochemical cycle: A thermodynamic analysis of the HI–H2O–I2 system and design of the HIx decomposition section , 2009 .

[44]  R P Abbott,et al.  Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine , 2008 .

[45]  J. F. Latkowski,et al.  Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE) , 2008 .

[46]  Greg F. Naterer,et al.  Thermochemical hydrogen production with a copper–chlorine cycle, II: Flashing and drying of aqueous cupric chloride , 2008 .

[47]  D. Ryland,et al.  Electrolytic hydrogen generation using CANDU nuclear reactors , 2007 .

[48]  Kaoru Onuki,et al.  Thermochemical Water Splitting for Hydrogen Production Utilizing Nuclear Heat from an HTGR , 2005 .

[49]  M. Übeyli Neutronic performance of new coolants in a fusion-fission (hybrid) reactor , 2004 .

[50]  K. R. Schultz,et al.  ALTERNATIVE FLOWSHEETS FOR THE SULFUR-IODINE THERMOCHEMICAL HYDROGEN CYCLE , 2003 .

[51]  Per F. Peterson,et al.  Control of the heavy-ion beam line gas pressure and density in the HYLIFE thick-liquid chamber , 2002 .

[52]  S. Şahin Power Flattening in a Catalyzed Deuterium-Deuterium Fusion-Driven Hybrid Blanket Using Nuclear Waste Actinides , 1990 .

[53]  M. Al-Eshaikh,et al.  Fission Power Flattening in Hybrid Blankets Using Mixed Fuel , 1987 .

[54]  G. E. Besenbruch,et al.  Preliminary results from bench-scale testing of a sulfur-iodine thermochemical water-splitting cycle , 1980 .

[55]  Mujid S. Kazimi,et al.  Efficiency of hydrogen production systems using alternative nuclear energy technologies , 2006 .

[56]  M. Dokiya,et al.  Hybrid cycle with electrolysis using CuCl system , 1976 .