A novel metal–organic framework with bifunctional tetrazolate-5-carboxylate ligand: Crystal structure and luminescent properties

[1]  Zhong-Ning Xu,et al.  Zinc(II) and Cadmium(II) Coordination Polymers Based on 3-(5H-Tetrazolyl)benzoate Ligand with Different Coordination Modes: Hydrothermal Syntheses, Crystal Structures and Ligand-Centered Luminescence , 2010 .

[2]  Dan Zhao,et al.  An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. , 2010, Angewandte Chemie.

[3]  G. Qian,et al.  A Rare Uninodal 9-Connected Metal−Organic Framework with Permanent Porosity , 2010 .

[4]  Christian J. Doonan,et al.  Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks , 2010, Science.

[5]  Sheng-ping Guo,et al.  Hydrothermal syntheses, structures and luminescent properties of group IIB metal coordination polymers based on bifunctional 1H-tetrazolate-5-acetic acid ligand , 2010 .

[6]  Sheng-ping Guo,et al.  Crystal structure and magnetic property of a 3D heterometallic coordination polymer constructed by 3-cyanobenzoate and 3-(5H-tetrazol) benzoate ligands , 2010 .

[7]  X. You,et al.  Cadmium Coordination Polymers Constructed from in Situ Generated Amino-Tetrazole Ligand: Effect of the Conditions on the Structures and Topologies , 2009 .

[8]  M. Zeller,et al.  In situ tetrazole ligand synthesis leading to a microporous cadmium-organic framework for selective ion sensing. , 2009, Chemical communications.

[9]  D. Choquesillo-Lazarte,et al.  Structure, magnetism and DFT studies of dinuclear and chain complexes containing the tetrazolate-5-carboxylate multidentate bridging ligand. , 2009, Dalton transactions.

[10]  Guanghua Li,et al.  Interweaving of single-helical and equal double-helical chains with the same helical axis in a 3D metal-organic framework , 2009 .

[11]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[12]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[13]  Songping D. Huang,et al.  Tanklike Metal−Organic Framework Filled with Perchloric Acid and Its Dielectric−Ferroelectric Properties , 2009 .

[14]  E. Gao,et al.  Coordination chemistry of tetrazolate-5-carboxylate with manganese(II): synthesis, structure and magnetism. , 2009, Dalton transactions.

[15]  Qun Yu,et al.  Tuning the framework topologies of Co(II)-doped Zn(II)-tetrazole-benzoate coordination polymers by ligand modifications: structures and spectral studies. , 2009, Inorganic chemistry.

[16]  Guo-Ping Yong,et al.  Synthesis, crystal structure and luminescence of a 3-D coordination polymer based on 4-(1H-tetrazol-5-yl) benzoic acid , 2009 .

[17]  A. J. Blake,et al.  In situ synthesis of 5-substituted-tetrazoles and metallosupramolecular co-ordination polymers , 2009 .

[18]  Yan-Qin Wang,et al.  Isomorphous CoII and MnII materials of tetrazolate-5-carboxylate with an unprecedented self-penetrating net and distinct magnetic behaviours. , 2008, Chemical communications.

[19]  Yan Li,et al.  A 3D-diamond-like tetrazole-based Zn(II) coordination polymer: Crystal structure, nonlinear optical effect and luminescent property , 2008 .

[20]  Gang Xu,et al.  A novel metal-organic network with high thermal stability: nonlinear optical and photoluminescent properties. , 2008, Inorganic chemistry.

[21]  Yan-Qin Wang,et al.  Synthesis, structure, and photoluminescence of a zinc(II) coordination polymer with 4-(tetrazol-5-yl)benzoate , 2008 .

[22]  Guo-Ping Yong,et al.  Synthesis, crystal structures and optical properties of two coordination polymers from 4-(1H-tetrazol-5-yl) benzoic acid , 2008 .

[23]  Xian‐Ming Zhang,et al.  Blue-green photoluminescent 5- and 10-connected metal 5-(4′-carboxy-phenyl)tetrazolate coordination polymers , 2007 .

[24]  Guo-Xi Wang,et al.  Ferroelectric metal-organic framework with a high dielectric constant. , 2006, Journal of the American Chemical Society.

[25]  Ling Wu,et al.  A 3-D noninterpenetrating diamondoid network of a decanuclear copper(I) complex. , 2005, Inorganic chemistry.

[26]  Xiao-Ming Chen,et al.  Recent Advances in Luminescent Monomeric, Multinuclear, and Polymeric Zn(II) and Cd(II) Coordination Complexes , 2004 .

[27]  C. Rao,et al.  Metal carboxylates with open architectures. , 2004, Angewandte Chemie.

[28]  C. Su,et al.  Exceptionally stable, hollow tubular metal-organic architectures: synthesis, characterization, and solid-state transformation study. , 2004, Journal of the American Chemical Society.

[29]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[30]  F. Himo,et al.  Why is tetrazole formation by addition of azide to organic nitriles catalyzed by zinc(II) salts? , 2003, Journal of the American Chemical Society.

[31]  Wenbin Lin,et al.  Interlocked chiral nanotubes assembled from quintuple helices. , 2003, Journal of the American Chemical Society.

[32]  Hong Zhao,et al.  Novel, acentric metal-organic coordination polymers from hydrothermal reactions involving in situ ligand synthesis. , 2002, Angewandte Chemie.

[33]  K. Sharpless,et al.  An Expedient Route to the Tetrazole Analogues of α-Amino Acids , 2002 .

[34]  Davide M Proserpio,et al.  Three novel interpenetrating diamondoid networks from self-assembly of 1,12-dodecanedinitrile with silver(I) salts. , 2002, Chemistry.

[35]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[36]  K. Sharpless,et al.  An intramolecular [2 + 3] cycloaddition route to fused 5-heterosubstituted tetrazoles. , 2001, Organic letters.

[37]  K. Sharpless,et al.  Preparation of 5-substituted 1H-tetrazoles from nitriles in water. , 2001, The Journal of organic chemistry.

[38]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[39]  L. Barbour,et al.  Controlling molecular self-organization: formation of nanometer-scale spheres and tubules , 1999, Science.

[40]  P. van der Sluis,et al.  BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions , 1990 .

[41]  Gang Xu,et al.  A diamond metal-organic framework with in situ generated 1H-tetrazolate-5-butyric acid ligand: Crystal structure, photoluminescence and high thermal stability , 2011 .

[42]  Yan Li,et al.  Hydrothermal syntheses, crystal structures and luminescent properties of zinc(II) coordination polymers constructed by bifunctional tetrazolate-5-carboxylate ligands , 2010 .

[43]  Zhi‐Ling Zhang,et al.  A novel 3D coordination polymer [Cd15(μ4-Mtta)12(μ3-Mtta)6(μ3-SO4)4(μ3-OH)4]: Synthesis, structure and solid properties , 2009 .

[44]  F. Zheng,et al.  New Copper(II) and Nickel(II) Complexes with Bifunctional Tetrazolate-5-carboxylate Ligands: Syntheses, Crystal Structures, and Magnetic Properties , 2009 .

[45]  Hong Zhao,et al.  In situ hydrothermal synthesis of tetrazole coordination polymers with interesting physical properties. , 2008, Chemical Society reviews.