On MAX - MIN Ant System's Parameters

The impact of the values of the most meaningful parameters on the behavior of $\cal M\!AX\!$–$\cal MI\!N\!$ Ant System is analyzed. Namely, we take into account the number of ants, the evaporation rate of the pheromone, and the exponent values of the pheromone trail and of the heuristic measure in the random proportional rule. We propose an analytic approach to examining their impact on the speed of convergence of the algorithm. Some computational experiments are reported to show the practical relevance of the theoretical results.

[1]  Eric Bonabeau,et al.  Evolving Ant Colony Optimization , 1998, Adv. Complex Syst..

[2]  George C. Runger,et al.  Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.

[3]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[4]  Marco Dorigo,et al.  An Investigation of some Properties of an "Ant Algorithm" , 1992, PPSN.

[5]  Keith L. Clark,et al.  On Optimal Parameters for Ant Colony Optimization Algorithms , 2005, IC-AI.

[6]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[7]  Giovanni Righini,et al.  Heuristics from Nature for Hard Combinatorial Optimization Problems , 1996 .

[8]  Christine Solnon Boosting ACO with a Preprocessing Step , 2002, EvoWorkshops.

[9]  Rolf Drechsler,et al.  Applications of Evolutionary Computing, EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, Naples, Italy, March 26-28, 2008. Proceedings , 2008, EvoWorkshops.

[10]  Thomas Stützle,et al.  Improvements on the Ant-System: Introducing the MAX-MIN Ant System , 1997, ICANNGA.

[11]  B. Bullnheimer,et al.  A NEW RANK BASED VERSION OF THE ANT SYSTEM: A COMPUTATIONAL STUDY , 1997 .

[12]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[13]  Mauro Birattari,et al.  The problem of tuning metaheuristics: as seen from the machine learning perspective , 2004 .

[14]  Tony White,et al.  Using Genetic Algorithms to Optimize ACS-TSP , 2002, Ant Algorithms.

[15]  Hoong Chuin Lau,et al.  Tuning Tabu Search Strategies Via Visual Diagnosis , 2007, Metaheuristics.

[16]  Marcus Randall Near Parameter Free Ant Colony Optimisation , 2004, ANTS Workshop.

[17]  Roberto Battiti,et al.  The Reactive Tabu Search , 1994, INFORMS J. Comput..

[18]  Krzysztof Socha,et al.  The Influence of Run-Time Limits on Choosing Ant System Parameters , 2003, GECCO.

[19]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[20]  Thomas Stützle,et al.  Ant Colony Optimization and Swarm Intelligence , 2008 .

[21]  Thomas Bartz-Beielstein,et al.  Tuning search algorithms for real-world applications: a regression tree based approach , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[22]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[23]  Raed Abu Zitar,et al.  Optimizing the Ant Colony Optimization using Standard Genetic Algorithm , 2005, Artificial Intelligence and Applications.

[24]  T. Stützle,et al.  MAX-MIN Ant System and local search for the traveling salesman problem , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).