Cubic semisymmetric graphs of order 6p3
暂无分享,去创建一个
[1] M. Šoviera. A contribution to the theory of voltage graphs , 1986 .
[2] Aleksander Malnič,et al. On Cubic Graphs Admitting an Edge-Transitive Solvable Group , 2004 .
[3] Chris D. Godsil,et al. On the full automorphism group of a graph , 1981, Comb..
[4] C. W. Parker,et al. Semisymmetric cubic graphs of twice odd order , 2004, Eur. J. Comb..
[5] J. Folkman. Regular line-symmetric graphs , 1967 .
[6] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[7] I. A. Faradzhev. Investigations in Algebraic Theory of Combinatorial Objects , 1994 .
[8] Mehdi Alaeiyan,et al. CUBIC EDGE-TRANSITIVE GRAPHS OF ORDER 8p2 , 2008, Bulletin of the Australian Mathematical Society.
[9] Mingyao Xu,et al. On semisymmetric cubic graphs of order 6p2 , 2004 .
[10] Yan-Quan Feng,et al. Cubic symmetric graphs of order twice an odd prime-power , 2006, Journal of the Australian Mathematical Society.
[11] Jonathan L. Gross,et al. Generating all graph coverings by permutation voltage assignments , 1977, Discret. Math..
[12] I. Bouwer. An Edge but not Vertex Transitive Cubic Graph* , 1968, Canadian Mathematical Bulletin.
[13] Yan-Quan Feng,et al. Cubic s-regular graphs of order 2p3 , 2006, J. Graph Theory.
[14] H. Wielandt,et al. Finite Permutation Groups , 1964 .
[15] David M. Goldschmidt,et al. Automorphisms of Trivalent Graphs , 1980 .
[16] Martin Skoviera,et al. Lifting Graph Automorphisms by Voltage Assignments , 2000, Eur. J. Comb..
[17] Dragan Marusic,et al. Semisymmetry of Generalized Folkman Graphs , 2001, Eur. J. Comb..
[18] Dragan Maru i. Constructing cubic edge- but not vertex-transitive graphs , 2000 .
[19] Mingyao Xu. Half-Transitive Graphs of Prime-Cube Order , 1992 .
[20] Dragan Marušič. Constructing cubic edge- but not vertex-transitive graphs , 2000 .
[21] Felix Lazebnik,et al. An infinite series of regular edge- but not vertex-transitive graphs , 2002 .
[22] Yan-Quan Feng,et al. Semisymmetric graphs , 2008, Discret. Math..
[23] Dragan Marusic,et al. An infinite family of cubic edge- but not vertex-transitive graphs , 2004, Discret. Math..
[24] Yan-Quan Feng,et al. Cubic s-regular graphs of order 2p 3 , 2006 .
[25] Aleksander Malnič,et al. Elementary Abelian Covers of Graphs , 2004 .
[26] Peter Lorimer,et al. Trivalent Symmetric Graphs of Order at most 120 , 1984, Eur. J. Comb..
[27] Aleksander Malnic,et al. Group actions, coverings and lifts of automorphisms , 1998, Discret. Math..
[28] D. Gorenstein. Finite Simple Groups: An Introduction to Their Classification , 1982 .
[29] D. Robinson. A Course in the Theory of Groups , 1982 .
[30] Ying Cheng,et al. On weakly symmetric graphs of order twice a prime , 1987, J. Comb. Theory, Ser. B.
[31] W. T. Tutte. A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.
[32] Ming-Yao Xu,et al. A classification of semisymmetric graphs of order 2pq , 2000 .
[33] Aleksander Malnič,et al. Cubic edge-transitive graphs of order 2p3 , 2004, Discret. Math..
[34] Yan-Quan Feng,et al. Cubic symmetric graphs of order a small number times a prime or a prime square , 2007, J. Comb. Theory, Ser. B.
[35] M. Conder,et al. A census of semisymmetric cubic graphs on up to 768 vertices , 2006 .
[36] Dragan Marusic,et al. Semisymmetric elementary abelian covers of the Möbius-Kantor graph , 2005, Discret. Math..
[37] J. Conway,et al. ATLAS of Finite Groups , 1985 .
[38] Steve Wilson,et al. A worthy family of semisymmetric graphs , 2003, Discret. Math..
[39] Yan-Quan Feng,et al. Classifying cubic symmetric graphs of order 8p or 8p2 , 2005, Eur. J. Comb..
[40] I. Z. Bouwer. On edge but not vertex transitive regular graphs , 1972 .
[41] Norman Biggs,et al. Three Remarkable Graphs , 1973, Canadian Journal of Mathematics.
[42] W. T. Tutte. On the Symmetry of Cubic Graphs , 1959, Canadian Journal of Mathematics.