Cubic semisymmetric graphs of order 6p3

A regular edge-transitive graph is said to be semisymmetric if it is not vertex-transitive. By Folkman [J. Folkman, Regular line-symmetric graphs, J. Combin Theory 3 (1967) 215-232], there is no semisymmetric graph of order 2p or 2p^2 for a prime p and by Malnic, et al. [A. Malnic, D. Marusic, C.Q. Wang, Cubic edge-transitive graphs of order 2p^3, Discrete Math. 274 (2004) 187-198], there exists a unique cubic semisymmetric graph of order 2p^3, the so-called Gray graph of order 54. In this paper it is shown that a connected cubic semisymmetric graph of order 6p^3 exists if and only if p-1 is divisible by 3. There are exactly two such graphs for a given order, which are constructed explicitly.

[1]  M. Šoviera A contribution to the theory of voltage graphs , 1986 .

[2]  Aleksander Malnič,et al.  On Cubic Graphs Admitting an Edge-Transitive Solvable Group , 2004 .

[3]  Chris D. Godsil,et al.  On the full automorphism group of a graph , 1981, Comb..

[4]  C. W. Parker,et al.  Semisymmetric cubic graphs of twice odd order , 2004, Eur. J. Comb..

[5]  J. Folkman Regular line-symmetric graphs , 1967 .

[6]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[7]  I. A. Faradzhev Investigations in Algebraic Theory of Combinatorial Objects , 1994 .

[8]  Mehdi Alaeiyan,et al.  CUBIC EDGE-TRANSITIVE GRAPHS OF ORDER 8p2 , 2008, Bulletin of the Australian Mathematical Society.

[9]  Mingyao Xu,et al.  On semisymmetric cubic graphs of order 6p2 , 2004 .

[10]  Yan-Quan Feng,et al.  Cubic symmetric graphs of order twice an odd prime-power , 2006, Journal of the Australian Mathematical Society.

[11]  Jonathan L. Gross,et al.  Generating all graph coverings by permutation voltage assignments , 1977, Discret. Math..

[12]  I. Bouwer An Edge but not Vertex Transitive Cubic Graph* , 1968, Canadian Mathematical Bulletin.

[13]  Yan-Quan Feng,et al.  Cubic s-regular graphs of order 2p3 , 2006, J. Graph Theory.

[14]  H. Wielandt,et al.  Finite Permutation Groups , 1964 .

[15]  David M. Goldschmidt,et al.  Automorphisms of Trivalent Graphs , 1980 .

[16]  Martin Skoviera,et al.  Lifting Graph Automorphisms by Voltage Assignments , 2000, Eur. J. Comb..

[17]  Dragan Marusic,et al.  Semisymmetry of Generalized Folkman Graphs , 2001, Eur. J. Comb..

[18]  Dragan Maru i Constructing cubic edge- but not vertex-transitive graphs , 2000 .

[19]  Mingyao Xu Half-Transitive Graphs of Prime-Cube Order , 1992 .

[20]  Dragan Marušič Constructing cubic edge- but not vertex-transitive graphs , 2000 .

[21]  Felix Lazebnik,et al.  An infinite series of regular edge- but not vertex-transitive graphs , 2002 .

[22]  Yan-Quan Feng,et al.  Semisymmetric graphs , 2008, Discret. Math..

[23]  Dragan Marusic,et al.  An infinite family of cubic edge- but not vertex-transitive graphs , 2004, Discret. Math..

[24]  Yan-Quan Feng,et al.  Cubic s-regular graphs of order 2p 3 , 2006 .

[25]  Aleksander Malnič,et al.  Elementary Abelian Covers of Graphs , 2004 .

[26]  Peter Lorimer,et al.  Trivalent Symmetric Graphs of Order at most 120 , 1984, Eur. J. Comb..

[27]  Aleksander Malnic,et al.  Group actions, coverings and lifts of automorphisms , 1998, Discret. Math..

[28]  D. Gorenstein Finite Simple Groups: An Introduction to Their Classification , 1982 .

[29]  D. Robinson A Course in the Theory of Groups , 1982 .

[30]  Ying Cheng,et al.  On weakly symmetric graphs of order twice a prime , 1987, J. Comb. Theory, Ser. B.

[31]  W. T. Tutte A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[32]  Ming-Yao Xu,et al.  A classification of semisymmetric graphs of order 2pq , 2000 .

[33]  Aleksander Malnič,et al.  Cubic edge-transitive graphs of order 2p3 , 2004, Discret. Math..

[34]  Yan-Quan Feng,et al.  Cubic symmetric graphs of order a small number times a prime or a prime square , 2007, J. Comb. Theory, Ser. B.

[35]  M. Conder,et al.  A census of semisymmetric cubic graphs on up to 768 vertices , 2006 .

[36]  Dragan Marusic,et al.  Semisymmetric elementary abelian covers of the Möbius-Kantor graph , 2005, Discret. Math..

[37]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[38]  Steve Wilson,et al.  A worthy family of semisymmetric graphs , 2003, Discret. Math..

[39]  Yan-Quan Feng,et al.  Classifying cubic symmetric graphs of order 8p or 8p2 , 2005, Eur. J. Comb..

[40]  I. Z. Bouwer On edge but not vertex transitive regular graphs , 1972 .

[41]  Norman Biggs,et al.  Three Remarkable Graphs , 1973, Canadian Journal of Mathematics.

[42]  W. T. Tutte On the Symmetry of Cubic Graphs , 1959, Canadian Journal of Mathematics.