Giga-z: A 100,000 OBJECT SUPERCONDUCTING SPECTROPHOTOMETER FOR LSST FOLLOW-UP

We simulate the performance of a new type of instrument, a Superconducting Multi-Object Spectrograph (SuperMOS), that uses microwave kinetic inductance detectors (MKIDs). MKIDs, a new detector technology, feature good quantum efficiency in the UVOIR, can count individual photons with microsecond timing accuracy, and, like X-ray calorimeters, determine their energy to several percent. The performance of Giga-z, a SuperMOS designed for wide field imaging follow-up observations, is evaluated using simulated observations of the COSMOS mock catalog with an array of 100,000 R_(423 nm) = E/ΔE = 30 MKID pixels. We compare our results against a simultaneous simulation of LSST observations. In 3 yr on a dedicated 4 m class telescope, Giga-z could observe ≈2 billion galaxies, yielding a low-resolution spectral energy distribution spanning 350–1350 nm for each; 1000 times the number measured with any currently proposed LSST spectroscopic follow-up, at a fraction of the cost and time. Giga-z would provide redshifts for galaxies up to z ≈ 6 with magnitudes m_i ≾ 25, with accuracy σ_(Δz/(1 + z)) ≈ 0.03 for the whole sample, and σ_(Δz/(1 + z)) ≈ 0.007 for a select subset. We also find catastrophic failure rates and biases that are consistently lower than for LSST. The added constraint on dark energy parameters for WL + CMB by Giga-z using the FoMSWG default model is equivalent to multiplying the LSST Fisher matrix by a factor of α = 1.27 (w_p), 1.53 (w_a), or 1.98 (Δγ). This is equivalent to multiplying both the LSST coverage area and the training sets by α and reducing all systematics by a factor of 1/√ α, advantages that are robust to even more extreme models of intrinsic alignment.

[1]  F. Castander,et al.  The ALHAMBRA Project: A large area multi medium-band optical and NIR photometric survey , 2008, 0806.3021.

[2]  Y. Wadadekar,et al.  MoMaF: the Mock Map Facility , 2003, astro-ph/0309305.

[3]  D. Gerdes,et al.  PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.

[4]  Michael A. Strauss,et al.  Measuring large-scale structure with quasars in narrow-band filter surveys , 2011, 1108.2657.

[5]  Michael P Lesser,et al.  Focal Plane Technologies for LSST , 2002, SPIE Astronomical Telescopes + Instrumentation.

[6]  Davis,et al.  A CENSUS OF STAR-FORMING GALAXIES AT z = 1–3 IN THE SUBARU DEEP FIELD , 2011, 1104.5019.

[7]  Masahiro Takada,et al.  Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration , 2006 .

[8]  M. Takada,et al.  A CLIPPING METHOD TO MITIGATE THE IMPACT OF CATASTROPHIC PHOTOMETRIC REDSHIFT ERRORS ON WEAK LENSING TOMOGRAPHY , 2010, 1002.2476.

[9]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[10]  F. Abdalla,et al.  The WiggleZ Dark Energy Survey: Direct constraints on blue galaxy intrinsic alignments at intermediate redshifts , 2009, 0911.5347.

[11]  Michael D. Schneider,et al.  The impact of intrinsic alignments: cosmological constraints from a joint analysis of cosmic shear and galaxy survey data , 2010, 1001.3787.

[12]  Jason Glenn,et al.  MKID multicolor array status and results from DemoCam , 2010, Astronomical Telescopes + Instrumentation.

[13]  Edwin Sirko,et al.  Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak , 2007 .

[14]  Rachel Mandelbaum,et al.  Intrinsic galaxy alignments from the 2SLAQ and SDSS surveys: luminosity and redshift scalings and implications for weak lensing surveys , 2007 .

[15]  G. M. Bernstein,et al.  Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing , 2001 .

[16]  Lado Samushia,et al.  Designing a space-based galaxy redshift survey to probe dark energy , 2010, 1006.3517.

[17]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[18]  Ellipticity of dark matter haloes with galaxy–galaxy weak lensing , 2005, astro-ph/0507108.

[19]  L. Moscardini,et al.  Measuring the Redshift Evolution of Clustering: the Hubble Deep Field South , 2002 .

[20]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[21]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[22]  Jeffrey A. Newman,et al.  Calibrating Redshift Distributions beyond Spectroscopic Limits with Cross-Correlations , 2008, 0805.1409.

[23]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[24]  G. Zamorani,et al.  Photometric redshifts for the CFHTLS T0004 deep and wide fields , 2008, 0811.3326.

[25]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[26]  M. Giavalisco,et al.  The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging , 2003, astro-ph/0309105.

[27]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[28]  F. Castander,et al.  OPTIMAL FILTER SYSTEMS FOR PHOTOMETRIC REDSHIFT ESTIMATION , 2008, 0812.3568.

[29]  D. Wake,et al.  MegaZ-LRG:a photometric redshift catalogue of one million SDSS luminous red galaxies , 2006, astro-ph/0607630.

[30]  David Moore,et al.  ARCHONS: a highly multiplexed superconducting optical to near-IR camera , 2010, Astronomical Telescopes + Instrumentation.

[31]  Yannick Mellier,et al.  ESA-ESO Working Group on "Fundamental Cosmology" , 2006 .

[32]  Daniela Calzetti The Effects of Dust on the Spectral Energy Distributions of Star-Forming Galaxies , 2000 .

[33]  Masanori Sato,et al.  RE-CAPTURING COSMIC INFORMATION , 2010, 1008.0349.

[34]  A. Fontana,et al.  The GOODS-MUSIC sample: a multicolour catalog of near-IR selected galaxies in the GOODS-South field , , 2006, astro-ph/0603094.

[35]  Reinhard Hanuschik,et al.  A flux-calibrated, high-resolution atlas of optical sky emission from UVES , 2003 .

[36]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[37]  M. Blanton,et al.  THE PRISM MULTI-OBJECT SURVEY (PRIMUS). I. SURVEY OVERVIEW AND CHARACTERISTICS , 2010, 1011.4307.

[38]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[39]  A. Ealet,et al.  Euclid mission: building of a reference survey , 2012, Other Conferences.

[40]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[41]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[42]  F. Castander,et al.  MEASURING BARYON ACOUSTIC OSCILLATIONS ALONG THE LINE OF SIGHT WITH PHOTOMETRIC REDSHIFS: THE PAU SURVEY , 2009 .

[43]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[44]  A. Cimatti,et al.  A catalogue of the Chandra Deep Field South with multi-colour classification and photometric redshifts from COMBO-17 , 2004, astro-ph/0403666.

[45]  Bernard Muschielok,et al.  The 4MOST instrument concept overview , 2014, Astronomical Telescopes and Instrumentation.

[46]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[47]  Frederick Mosteller,et al.  Understanding robust and exploratory data analysis , 1983 .

[48]  Granada,et al.  Galaxies in the Hubble Ultra Deep Field. I. Detection, Multiband Photometry, Photometric Redshifts, and Morphology , 2006, astro-ph/0605262.

[49]  Andrew P. Hearin,et al.  A GENERAL STUDY OF THE INFLUENCE OF CATASTROPHIC PHOTOMETRIC REDSHIFT ERRORS ON COSMOLOGY WITH COSMIC SHEAR TOMOGRAPHY , 2010, 1002.3383.

[50]  T. Kitching,et al.  Cosmological constraints from COMBO-17 using 3D weak lensing , 2006, astro-ph/0610284.

[51]  G. M. Bernstein,et al.  Dark Energy Constraints from Weak-Lensing Cross-Correlation Cosmography , 2003, astro-ph/0309332.

[52]  C. J. Macdonald,et al.  Photometric Redshift Biases from Galaxy Evolution , 2010, 1002.0008.

[53]  David W. Hogg,et al.  Deep Optical Galaxy Counts with the Keck Telescope , 1995, astro-ph/9506095.

[54]  G. Bernstein,et al.  Catastrophic photometric redshift errors: weak-lensing survey requirements , 2009, 0902.2782.

[55]  Tamas Budavari,et al.  A UNIFIED FRAMEWORK FOR PHOTOMETRIC REDSHIFTS , 2008, 0811.2600.

[56]  P. Schipani,et al.  The VLT‐VIRMOS Mask Manufacturing Unit , 2001 .

[57]  Edinburgh,et al.  Evolution of the dark matter distribution with three-dimensional weak lensing , 2004, astro-ph/0403384.

[58]  Martin White,et al.  Tomography of Lensing Cross-Power Spectra , 2003, astro-ph/0311104.

[59]  Manda Banerji,et al.  Photometric Redshifts for the Dark Energy Survey and VISTA and Implications for Large Scale Structure , 2007, 0711.1059.

[60]  Lindsay King Cosmic shear as a tool for precision cosmology: Minimising intrinsic galaxy alignment-lensing interference , 2005 .

[61]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[62]  Alexander G. Gray,et al.  Efficient photometric selection of quasars from the sloan digital sky survey: 100,000 z < 3 quasars from data release one , 2004 .

[63]  A. Cuesta,et al.  A 2 per cent distance to $z$=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey , 2012, 1202.0090.

[64]  A. Ealet,et al.  Designing future dark energy space missions. I. Building realistic galaxy spectro-photometric catalo , 2009, 0902.0625.

[65]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[66]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[67]  Usa,et al.  Measuring BAO and non-Gaussianity via QSO clustering , 2011, 1108.1198.

[68]  A. Benoit,et al.  Characterization of lumped element kinetic inductance detectors for mm-wave detection , 2010, Astronomical Telescopes + Instrumentation.

[69]  Robert C. Nichol,et al.  The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data , 2006, astro-ph/0605302.

[70]  J. Silk COSMIC BLACK-BODY RADIATION AND GALAXY FORMATION. , 1968 .

[71]  Gary M. Bernstein,et al.  COMPREHENSIVE TWO-POINT ANALYSES OF WEAK GRAVITATIONAL LENSING SURVEYS , 2008, 0808.3400.

[72]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .